activation_compute.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename Functor>
void Activate(const platform::CPUDeviceContext& context,
              const framework::LoDTensor* X, framework::LoDTensor* Out) {
  using T = typename Functor::ELEMENT_TYPE;
  auto* place = context.eigen_device();
  auto x =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(X));
  auto out =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(Out));
  Functor()(*place, x, out);
}

template <typename Functor>
void ActivateGrad(const platform::CPUDeviceContext& context,
                  const framework::LoDTensor* X,
                  const framework::LoDTensor* Out,
                  const framework::LoDTensor* Out_grad,
                  framework::LoDTensor* X_grad) {
  using T = typename Functor::ELEMENT_TYPE;
  auto* place = context.eigen_device();
  auto x =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(X));
  auto out =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(Out));
  auto x_grad = framework::EigenVector<T>::Flatten(
      paddle::operators::detail::Ref(X_grad));
  auto out_grad = framework::EigenVector<T>::Flatten(
      paddle::operators::detail::Ref(Out_grad));
  Functor()(*place, x, out, out_grad, x_grad);
}

template <typename T>
L
liuwei1031 已提交
58
class SquareCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
Y
Yan Chunwei 已提交
59 60 61 62
 public:
  using param_t = operators::ActivationParam;

  void Run() override {
T
tensor-tang 已提交
63
    auto& context = ctx_->As<X86Context>();
Y
Yan Chunwei 已提交
64
    auto& param = *param_.get_mutable<operators::ActivationParam>();
65
    CHECK(context.x86_device_context());
Y
Yan Chunwei 已提交
66 67

    param.Out->template mutable_data<T>();
68
    Activate<paddle::operators::SquareFunctor<T>>(*context.x86_device_context(),
Y
Yan Chunwei 已提交
69 70 71 72 73 74 75 76
                                                  &param.X->raw_tensor(),
                                                  &param.Out->raw_tensor());
  }

  virtual ~SquareCompute() = default;
};

template <typename T>
L
liuwei1031 已提交
77
class SquareGradCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
Y
Yan Chunwei 已提交
78 79 80 81
 public:
  using param_t = operators::ActivationGradParam;

  void Run() override {
T
tensor-tang 已提交
82
    auto& context = ctx_->As<X86Context>();
Y
Yan Chunwei 已提交
83
    auto& param = *param_.get_mutable<operators::ActivationGradParam>();
84
    CHECK(context.x86_device_context());
Y
Yan Chunwei 已提交
85 86 87
    param.X_grad->template mutable_data<T>();

    ActivateGrad<paddle::operators::SquareGradFunctor<T>>(
88
        *context.x86_device_context(), &param.X->raw_tensor(),
Y
Yan Chunwei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        &param.Out->raw_tensor(), &param.Out_grad->raw_tensor(),
        &param.X_grad->raw_tensor());
  }

  virtual ~SquareGradCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// float
REGISTER_LITE_KERNEL(square, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::SquareCompute<float>, def)
L
liuwei1031 已提交
104 105
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
Y
Yan Chunwei 已提交
106 107 108 109
    .Finalize();

REGISTER_LITE_KERNEL(square_grad, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::SquareGradCompute<float>, def)
L
liuwei1031 已提交
110 111 112 113 114 115
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput(paddle::framework::GradVarName("Out"),
               {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput(paddle::framework::GradVarName("X"),
                {LiteType::GetTensorTy(TARGET(kX86))})
Y
Yan Chunwei 已提交
116
    .Finalize();