operator.cc 27.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15 16
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL

17
#include "paddle/fluid/framework/operator.h"
18 19
#include <gflags/gflags.h>
#include <glog/logging.h>
20
#include <algorithm>
21 22 23
#include <sstream>
#include <string>
#include <vector>
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
26
#include "paddle/fluid/framework/lod_tensor.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
31

D
dzhwinter 已提交
32
DECLARE_bool(benchmark);
C
chengduoZH 已提交
33 34 35
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
36

Q
Qiao Longfei 已提交
37 38 39
namespace paddle {
namespace framework {

40 41 42 43 44 45
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
46

Q
qiaolongfei 已提交
47 48 49 50 51 52 53 54 55 56 57
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

58 59
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
60
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
61 62
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
63 64
  }

M
minqiyang 已提交
65 66
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
67
    if (UNLIKELY(!tensor.IsInitialized())) {
68
      return DDim({-1});
69
    }
M
minqiyang 已提交
70 71 72 73 74 75 76
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
M
minqiyang 已提交
99 100
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104 105 106
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return DataTypeToString(ToDataType(tensor.type()));
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

112 113 114 115 116 117
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
118 119
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
120 121 122 123 124
  }

  return -1;
}

Q
Qiao Longfei 已提交
125 126 127 128 129 130 131 132
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
133 134 135
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
136 137
      return default_lod;
    }
M
minqiyang 已提交
138
    return tensor.lod();
Q
Qiao Longfei 已提交
139 140 141 142 143
  } else {
    return default_lod;
  }
}

144
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
145 146 147 148 149
  try {
    if (VLOG_IS_ON(4)) {
      VLOG(4) << place << " " << DebugStringEx(&scope);
    }
    if (platform::is_gpu_place(place)) {
150
#ifndef PADDLE_WITH_CUDA
151
      PADDLE_THROW("Cannot run operator on place %s", place);
152
#else
153 154
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
155
#endif
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    }
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
    if (VLOG_IS_ON(3)) {
      VLOG(3) << place << " " << DebugStringEx(&scope);
    }
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
      throw exception;
    }

    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
      throw exception;
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
    throw exception;
  } catch (...) {
    std::rethrow_exception(std::current_exception());
186 187 188
  }
}

189 190 191 192 193 194 195 196
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

197
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
198
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
199
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
200 201
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
202
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
203 204
}

Y
Yu Yang 已提交
205 206
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
207
  auto it = inputs_.find(name);
208 209
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
210
  return it->second;
Y
Yan Chunwei 已提交
211 212
}

213
bool OperatorBase::HasOutputs(const std::string& name) const {
214
  if (outputs_.end() != outputs_.find(name)) {
215 216 217 218 219 220
    return true;
  } else {
    return false;
  }
}

221
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
222
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
223
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
224 225
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
226
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
227 228
}

Y
Yu Yang 已提交
229 230
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
231
  auto it = outputs_.find(name);
232 233
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
234
  return it->second;
Y
Yan Chunwei 已提交
235 236
}

237
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
238
  std::stringstream ss;
Y
Yu Yang 已提交
239
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
240 241
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
242 243
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
244 245
      auto var_name = input.second[i];
      ss << var_name;
246
      if (scope) {
Q
Qiao Longfei 已提交
247 248 249 250 251 252 253 254 255 256 257
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
258
        }
259
      }
Y
Yu Yang 已提交
260 261 262
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
263
    }
Y
Yu Yang 已提交
264
    ss << "]";
Y
Yu Yang 已提交
265 266
    ++it;
    if (it != inputs_.end()) {
267 268
      ss << ", ";
    }
Q
Qiao Longfei 已提交
269
  }
Y
Yu Yang 已提交
270
  ss << "}, outputs:{";
Y
Yu Yang 已提交
271 272
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
273 274
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
275 276
      auto var_name = output.second[i];
      ss << var_name;
277
      if (scope) {
Q
Qiao Longfei 已提交
278 279 280 281 282 283 284 285 286
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
287
        }
288
      }
Y
Yu Yang 已提交
289 290 291
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
292
    }
Y
Yu Yang 已提交
293
    ss << "]";
Y
Yu Yang 已提交
294 295
    ++it;
    if (it != outputs_.end()) {
296 297
      ss << ", ";
    }
Q
Qiao Longfei 已提交
298
  }
Y
Yu Yang 已提交
299
  ss << "}.";
Q
Qiao Longfei 已提交
300 301 302
  return ss.str();
}

Y
Yu Yang 已提交
303
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
304 305
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
306 307
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
308 309
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
310
}
311

Q
qijun 已提交
312 313
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
314
  for (auto& o : inputs_) {
Q
qijun 已提交
315 316 317 318 319 320
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
321 322 323 324 325 326 327 328 329 330
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
331
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
332 333

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
334
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
335 336 337 338 339 340 341 342 343
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
344 345
}

346 347 348
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
349
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
350 351

  for (auto& in : op_info->Proto().inputs()) {
352 353 354 355
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
356 357 358
  }

  for (auto& out : op_info->Proto().outputs()) {
359 360 361 362 363
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

380 381 382 383
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

384
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
385
  if (var->IsType<LoDTensor>()) {
386
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
387
  } else if (var->IsType<SelectedRows>()) {
388
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
389
  } else {
Y
Yang Yang 已提交
390 391
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
392 393 394 395 396
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
397
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
398
  } else if (var->IsType<SelectedRows>()) {
399
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
400
  } else {
Y
Yang Yang 已提交
401 402
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
403 404 405
  }
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

438
template <>
439
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
440
  auto* var = InputVar(name);
441 442
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
443 444 445
}

template <>
446
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
447 448 449 450
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
451 452 453 454 455
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
456 457 458 459
  return res;
}

template <>
460
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
461
  auto var = OutputVar(name);
Q
QI JUN 已提交
462
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
463 464 465
}

template <>
466
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
467 468 469 470
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
471 472
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
473 474
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
475
                                         : GetMutableTensorFromVar(var);
476
                 });
477 478 479
  return res;
}

Y
Yu Yang 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

495 496 497 498 499 500
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
501 502 503 504
    // has only one input
    const auto& ins = op_.Inputs();
    auto it = ins.find(name);
    if (it == ins.end()) {
505 506
      return false;
    }
507
    const auto& in = it->second;
T
tensor-tang 已提交
508
    if (in.size() == 0 || in[0] == kEmptyVarName) {
509 510
      return false;
    }
T
tensor-tang 已提交
511
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
512
                      "Input %s should not have more than one inputs", name);
513
    return scope_.FindVar(in[0]) != nullptr;
514 515 516
  }

  bool HasOutput(const std::string& name) const override {
517 518 519 520
    // has only one output
    const auto& outs = op_.Outputs();
    auto it = outs.find(name);
    if (it == outs.end()) {
521 522
      return false;
    }
523
    const auto& out = it->second;
T
tensor-tang 已提交
524
    if (out.size() == 0 || out[0] == kEmptyVarName) {
525 526
      return false;
    }
T
tensor-tang 已提交
527 528
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
529
    return scope_.FindVar(out[0]) != nullptr;
530 531 532
  }

  bool HasInputs(const std::string& name) const override {
533 534 535
    if (!op_.HasInputs(name)) {
      return false;
    }
536 537 538 539 540 541 542 543 544 545 546 547 548
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
549 550 551
    if (!op_.HasOutputs(name)) {
      return false;
    }
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
576 577 578 579 580 581 582 583 584 585 586 587
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
588

M
mozga-intel 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
622 623
  }

624 625 626
  bool IsRuntime() const override { return true; }

 protected:
627 628
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
629
    PADDLE_ENFORCE_NOT_NULL(var);
630 631 632 633 634
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
635 636 637 638 639 640 641
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
642
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
643
    PADDLE_THROW("Only compile time support this method");
644 645 646 647 648 649 650 651 652
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
653 654
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
655 656 657
    }
  }

F
fengjiayi 已提交
658 659
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
660
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
661 662
  }

663
  proto::VarType::Type GetVarType(const std::string& name) const override {
664 665 666 667
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
668 669 670 671
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

672
 private:
673 674 675 676
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
677 678 679 680 681
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
682
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
683 684 685 686 687 688 689 690
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

691 692
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
693 694
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
695
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
696
  auto* dev_ctx = pool.Get(place);
697

698 699 700 701
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
702 703
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
704 705
  }

Q
qiaolongfei 已提交
706 707
  OpKernelMap& kernels = kernels_iter->second;

708 709
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
710

711 712 713 714
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
715 716
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
717 718
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

719
  auto kernel_iter = kernels.find(expected_kernel_key);
720
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
721
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
722 723
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
724
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
725 726 727 728 729
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
730 731 732 733 734
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
735 736 737 738
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
739

Y
yuyang18 已提交
740 741 742 743 744 745
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
746
  }
Q
QI JUN 已提交
747

Y
yuyang18 已提交
748
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
749

Y
yuyang18 已提交
750 751 752
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
753 754
  }

D
dzhwinter 已提交
755
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
756
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
757
    dev_ctx->Wait();
D
dzhwinter 已提交
758
  }
C
chengduoZH 已提交
759 760 761

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
762
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
763 764 765
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
766 767
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
768 769 770
      }
    }
  }
Q
Qiao Longfei 已提交
771
}
Y
yuyang18 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
823
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
824 825 826 827 828 829
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
830

831
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
832 833 834
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
835
  std::string last_input_name;
Y
Yu Yang 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
850 851
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
852 853
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
854
          data_type = tmp;
855
          last_input_name = ipt_name;
Y
Yu Yang 已提交
856 857 858 859 860
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
861
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
862
}
863

864 865 866 867 868 869 870 871
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
872 873
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
874 875
}

Q
Qiao Longfei 已提交
876
}  // namespace framework
L
liaogang 已提交
877
}  // namespace paddle