test_imperative.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17
import unittest
import numpy as np
X
Xin Pan 已提交
18
import sys
19 20 21

import paddle.fluid as fluid
from paddle.fluid import core
J
JiabinYang 已提交
22 23 24 25
from paddle.fluid.imperative.nn import FC
from paddle.fluid.imperative.nn import SimpleRNNCell
from typing import List, Any, Tuple

M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class MyLayer(fluid.imperative.Layer):
30 31 32 33
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
M
minqiyang 已提交
34
        x = fluid.layers.relu(inputs)
35
        self._x_for_debug = x
X
Xin Pan 已提交
36 37 38
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
39 40


X
Xin Pan 已提交
41 42 43 44 45 46
class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
47
        return np.tanh(inputs[0])
X
Xin Pan 已提交
48 49

    @staticmethod
X
Xin Pan 已提交
50 51
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
52
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
53 54


X
Xin Pan 已提交
55
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
56 57 58 59 60 61 62 63 64 65
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
66
        x = self._fc1(inputs)
X
Xin Pan 已提交
67 68 69 70 71
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


J
JiabinYang 已提交
72
class SimpleRNN(fluid.imperative.Layer):
J
JiabinYang 已提交
73
    def __init__(self):
J
JiabinYang 已提交
74
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
75 76 77 78 79 80
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
81 82

    def forward(self, inputs):
J
JiabinYang 已提交
83 84 85 86 87 88 89 90 91 92
        out = list()
        pre_hiddens = list()

        init_hidden = fluid.layers.tensor.create_parameter(
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
93
        for i in range(self.seq_len):
J
JiabinYang 已提交
94 95 96 97 98 99 100
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
            pre_hidden, out_softmax = self._cell(input, pre_hidden)
            out.append(out_softmax)

        return out, pre_hiddens
J
JiabinYang 已提交
101 102


103 104 105 106 107
class TestImperative(unittest.TestCase):
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
X
Xin Pan 已提交
108
            l = fluid.imperative.Layer()
M
minqiyang 已提交
109
            self.assertRaises(NotImplementedError, l.forward, [])
X
polish  
Xin Pan 已提交
110 111 112 113 114 115 116 117 118 119

    def test_pylayer_func_id(self):

        with fluid.imperative.guard():

            class PyLayer1(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer1, self).__init__()

                @staticmethod
M
minqiyang 已提交
120 121
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
122 123

                @staticmethod
M
minqiyang 已提交
124 125
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
126 127 128 129 130 131

            class PyLayer2(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer2, self).__init__()

                @staticmethod
M
minqiyang 已提交
132 133
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
134 135

                @staticmethod
M
minqiyang 已提交
136 137
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
138 139 140

            py_layer_1 = PyLayer1()
            py_layer_2 = PyLayer2()
M
minqiyang 已提交
141 142
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
            py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
143 144 145 146 147
            id = py_layer_1.forward_id
            self.assertGreater(id, 0)
            self.assertEqual(py_layer_1.backward_id, id + 1)
            self.assertEqual(py_layer_2.forward_id, id + 2)
            self.assertEqual(py_layer_2.backward_id, id + 3)
M
minqiyang 已提交
148
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
149
            self.assertEqual(py_layer_1.forward_id, id)
150

X
Xin Pan 已提交
151
    def test_pylayer(self):
X
Xin Pan 已提交
152
        np_inp = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
153 154
        with fluid.imperative.guard():
            my_py_layer = MyPyLayer()
X
Xin Pan 已提交
155
            var_inp = fluid.imperative.base.to_variable(np_inp)
M
minqiyang 已提交
156
            outs = my_py_layer(var_inp)
X
Xin Pan 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            dy_out = np.sum(outs[0]._numpy())
            outs[0]._backward()
            dy_grad = var_inp._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            # TODO(panyx0718): Paddle doesn't diff against data `inp`.
            x1 = inp * 1
            # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
            x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[x1.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
X
Xin Pan 已提交
178

179
    def test_layer_in_out(self):
X
Xin Pan 已提交
180
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
181
        with fluid.imperative.guard():
M
minqiyang 已提交
182
            var_inp = fluid.imperative.base.to_variable(np_inp)
183
            l = MyLayer()
M
minqiyang 已提交
184
            x = l(var_inp)[0]
185
            self.assertIsNotNone(x)
X
Xin Pan 已提交
186
            dy_out = x._numpy()
187
            x._backward()
X
Xin Pan 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer()
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
M
minqiyang 已提交
209
            var_inp = fluid.imperative.base.to_variable(np_inp)
X
Xin Pan 已提交
210
            mlp = MLP()
M
minqiyang 已提交
211
            out = mlp(var_inp)
X
Xin Pan 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP()
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
232

J
JiabinYang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
        # with fluid.imperative.guard():
        #     var_inp = fluid.imperative.base.to_variable(np_inp)
        #     var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
        #     simple_rnn = SimpleRNN()
        #     outs, pre_hiddens = simple_rnn.forward(var_inp)
        #     dy_out = outs[3]._numpy()
        #     outs[3]._backward()
        #     dy_grad = simple_rnn._cell._i2h_w._gradient()
        #     print("dy_grad is {}".format(dy_grad))

        with new_program_scope():
            print("im here")
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
            simple_rnn = SimpleRNN()
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(
                outs[3],
                parameter_list=[
                    simple_rnn._cell._i2h_w.name, simple_rnn._cell._h2h_w.name,
                    simple_rnn._cell._h2o_w.name
                ])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            # print("param_grads is : {} ".format(param_grads))
            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[outs[3].name, param_grads[2][1].name])
            # self.assertTrue(np.allclose(dy_out, static_out))
            # self.assertTrue(np.allclose(dy_grad, static_grad))
J
JiabinYang 已提交
268

269 270 271

if __name__ == '__main__':
    unittest.main()