“a31d7328b70fde9c860dfad918222d7b2d842d71”上不存在“git@gitcode.net:BaiXuePrincess/Paddle.git”
elementwise_op_function.h 23.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include <glog/logging.h>
17
#include <algorithm>
18
#include <vector>
Y
Yi Wang 已提交
19 20 21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
23

C
chengduoZH 已提交
24
#ifdef __NVCC__
25
#include <cuda.h>
C
chengduoZH 已提交
26
#include <thrust/iterator/iterator_adaptor.h>
27
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
28
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yu Yang 已提交
29
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
C
chengduoZH 已提交
30 31
#endif

Y
Yi Wang 已提交
32
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/platform/for_range.h"
34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
44
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
45 46
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
47
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
48 49 50
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
51 52 53 54
                         int* pre, int* n, int* post) {
  *pre = 1;
  *n = 1;
  *post = 1;
55
  for (int i = 0; i < axis; ++i) {
56
    (*pre) *= x_dims[i];
57 58 59 60 61
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
62
    (*n) *= y_dims[i];
63 64 65
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
66
    (*post) *= x_dims[i];
67 68 69
  }
}

70 71
inline framework::DDim trim_trailing_singular_dims(
    const framework::DDim& dims) {
72
  // Remove trailing dimensions of size 1 for y
73
  auto actual_dims_size = dims.size();
74
  for (; actual_dims_size != 0; --actual_dims_size) {
75
    if (dims[actual_dims_size - 1] != 1) break;
76
  }
77 78 79 80 81

  std::vector<int> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
82
  }
83 84
  framework::DDim actual_dims = framework::make_ddim(trim_dims);
  return actual_dims;
85 86
}

Q
QI JUN 已提交
87
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
88
class RowwiseTransformIterator;
Q
QI JUN 已提交
89
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
90
class MidWiseTransformIterator;
C
chengduoZH 已提交
91 92

template <typename T>
Q
QI JUN 已提交
93
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
94
 public:
C
chengduoZH 已提交
95 96
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
97
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
98
    ++i_;
C
chengduoZH 已提交
99 100 101
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
102 103 104
    return *this;
  }

Q
QI JUN 已提交
105 106
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
107
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
108 109
  }

Q
QI JUN 已提交
110 111
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
112
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
113 114 115 116
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
117
 private:
C
chengduoZH 已提交
118 119
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
120
  int64_t n_;
C
chengduoZH 已提交
121 122 123
};

template <typename T>
Q
QI JUN 已提交
124
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
125
 public:
C
chengduoZH 已提交
126 127 128
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
129
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
130
    ++j_;
C
chengduoZH 已提交
131 132
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
133
      j_ = 0;
C
chengduoZH 已提交
134 135 136
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
137
    }
C
chengduoZH 已提交
138 139 140
    return *this;
  }

Q
QI JUN 已提交
141 142
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
143
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
144 145
  }

Q
QI JUN 已提交
146 147
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
148
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
149 150 151 152
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
153
 private:
C
chengduoZH 已提交
154
  const T* ptr_;
C
refine  
chengduoZH 已提交
155
  int64_t i_;
C
chengduoZH 已提交
156 157
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
158
  int64_t post_;
C
chengduoZH 已提交
159 160
};

C
chengduoZH 已提交
161 162
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
163
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
164
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
165
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
166 167
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
168
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
169
      super_t;
C
chengduoZH 已提交
170
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
171
      : super_t(x), begin_(x), n_(n) {}
C
chengduoZH 已提交
172 173 174 175 176
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
177
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
178 179 180 181 182
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
183
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
184
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
185
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
186 187
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
188
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
189
      super_t;
C
chengduoZH 已提交
190
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
191
      : super_t(x), begin_(x), n_(n), post_(post) {}
C
chengduoZH 已提交
192 193 194 195 196 197
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
198
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
199 200 201 202 203
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

204 205
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
206 207
class TransformFunctor {
 public:
C
chengduoZH 已提交
208
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
209
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
210 211
      : x_(x->data<T>()),
        y_(y->data<T>()),
212
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
213 214 215 216 217
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
218
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
219
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
220 221 222
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
223 224 225
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
226 227 228
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
229 230 231
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
232 233
  }

C
chengduoZH 已提交
234
 private:
C
chengduoZH 已提交
235 236
  const T* x_;
  const T* y_;
237
  OutType* z_;
C
chengduoZH 已提交
238
  int64_t nx_;
Q
QI JUN 已提交
239
  const DeviceContext& ctx_;
C
chengduoZH 已提交
240 241 242
  Functor func_;
};

243 244
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
245
    template <typename DeviceContext, typename T>                              \
246 247 248 249 250 251
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
252 253 254
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
255
    }                                                                          \
Q
QI JUN 已提交
256
    template <typename DeviceContext, typename T>                              \
257 258 259 260 261 262 263 264 265 266
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
267 268 269
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
270
    }                                                                          \
Q
QI JUN 已提交
271
    template <typename DeviceContext, typename T>                              \
272 273 274 275 276 277 278 279 280 281 282
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
283 284 285
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    }                                                                          \
  }

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310 311 312
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
  const T* x_;
  const T* y_;
  const T* out_;
  const T* dout_;

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
313
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
  T* dx_;
  T* dy_;
};

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int h, int w, DX_OP dx_op,
                                      DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int x_offset = i * w + j;
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy != nullptr) {
        T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        if (i == 0) {
          dy[j] = tmp;
        } else {
          dy[j] += tmp;
        }
      }
    }
  }
}
344

D
dzhwinter 已提交
345
#ifdef __NVCC__
Y
Yu Yang 已提交
346 347 348 349 350 351 352
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduoZH 已提交
353
  T val = 0;
Y
Yu Yang 已提交
354 355 356 357 358 359 360

  do {
    int x_offset = i * w + j;
    if (dx) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }
    if (dy) {
C
chengduoZH 已提交
361
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
362 363 364 365 366
    }
    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

  if (dy) {
C
chengduoZH 已提交
367
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
368
    val = paddle::platform::reduceSum(val, tid, h);
Y
Yu Yang 已提交
369
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
370
      dy[j] = val;
Y
Yu Yang 已提交
371 372 373 374 375 376 377 378 379 380 381
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int h, int w, DX_OP dx_op, DY_OP dy_op,
                                       T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
C
chengduoZH 已提交
382 383
  ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, h, w, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int pre, int n, int post,
                                      DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int x_offset = i * n * post + j * post + k;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0 && k == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int pre, int n,
    int post, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduoZH 已提交
421
  T val = 0;
Y
Yu Yang 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
  int ttid = tid;

  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int x_offset = i * n * post + j * post + k;

    if (dx != nullptr) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }

    if (dy != nullptr) {
C
chengduoZH 已提交
436
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
437 438 439 440 441 442
    }

    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

  if (dy) {
C
chengduoZH 已提交
443 444
    int h = pre * post;
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
445
    val = paddle::platform::reduceSum(val, tid, h);
C
chengduoZH 已提交
446
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
447
      dy[j] = val;
Y
Yu Yang 已提交
448 449 450 451 452 453 454 455 456 457 458
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int pre, int n, int post, DX_OP dx_op,
                                       DY_OP dy_op, T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
459 460
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, pre, n, post, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
461 462 463 464
}

#endif

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeNoBroadcast(
    const framework::ExecutionContext& ctx, const framework::DDim& x_dim,
    const framework::DDim& y_dim, const framework::Tensor& x,
    const framework::Tensor& y, const framework::Tensor& out,
    const framework::Tensor& dout, int axis, framework::Tensor* dx,
    framework::Tensor* dy, DX_OP dx_op, DY_OP dy_op) {
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
  for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
      x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeWithBroadcast(
    const framework::ExecutionContext& ctx, const framework::DDim& x_dim,
    const framework::DDim& y_dim_untrimed, const framework::Tensor& x,
    const framework::Tensor& y, const framework::Tensor& out,
    const framework::Tensor& dout, int axis, framework::Tensor* dx,
    framework::Tensor* dy, DX_OP dx_op, DY_OP dy_op) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast1CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast1CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op,
          dy_op, dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast2CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post, dx_op,
          dy_op, dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast2CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
          dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

Y
Yu Yang 已提交
530 531 532 533 534 535 536
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
                         const framework::Tensor& x, const framework::Tensor& y,
                         const framework::Tensor& out,
                         const framework::Tensor& dout, int axis,
                         framework::Tensor* dx, framework::Tensor* dy,
                         DX_OP dx_op, DY_OP dy_op) {
537 538
  const framework::DDim x_dim = x.dims();
  const framework::DDim y_dim = y.dims();
Y
Yu Yang 已提交
539
  if (x.dims() == y.dims()) {
540 541
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
Y
Yu Yang 已提交
542
  } else {  // Y is a scalar
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseExplicitGradCompute(const framework::ExecutionContext& ctx,
                                 const framework::Tensor& x,
                                 const framework::Tensor& y,
                                 const framework::Tensor& out,
                                 const framework::Tensor& dout, int axis,
                                 framework::Tensor* dx, framework::Tensor* dy,
                                 DX_OP dx_op, DY_OP dy_op) {
  if (dy == nullptr) {
    const framework::DDim dx_dims = dout.dims();
    auto dy_dims = dx_dims;
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  } else {
    if (dout.dims() == dy->dims()) {
      const framework::DDim dx_dims = dout.dims();
      const framework::DDim dy_dims = dy->dims();
      ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
          ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    } else {  // Y is a scalar
      auto dx_dims = dout.dims();
      const framework::DDim dy_dims = dy->dims();
      ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
          ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
Y
Yu Yang 已提交
576 577
    }
  }
578
}
Y
Yu Yang 已提交
579

580
// Deprecated
Q
QI JUN 已提交
581
template <typename DeviceContext, typename T, typename functor,
F
fengjiayi 已提交
582
          typename broadcastfunctor, typename broadcast2functor>
C
chengduoZH 已提交
583 584 585 586 587 588
void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
                            const framework::Tensor* x,
                            const framework::Tensor* y,
                            const framework::Tensor* out,
                            const framework::Tensor* dout, int axis,
                            framework::Tensor* dx, framework::Tensor* dy) {
Q
QI JUN 已提交
589
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
608
  trim_trailing_singular_dims(y_dims);
609
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
610 611

  int pre, n, post;
612
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
613 614 615 616 617 618 619 620 621 622 623

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
F
fengjiayi 已提交
624

625 626
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
C
chengduoZH 已提交
627 628
void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
                          const framework::Tensor* x,
C
chengduoZH 已提交
629
                          const framework::Tensor* y, int axis, Functor func,
C
chengduoZH 已提交
630
                          framework::Tensor* z) {
631
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
C
chengduoZH 已提交
632
      x, y, z, ctx.template device_context<DeviceContext>(), func);
F
fengjiayi 已提交
633 634

  auto x_dims = x->dims();
635 636
  auto y_dims_untrimed = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims_untrimed.size(),
F
fengjiayi 已提交
637 638
                    "Rank of first input must >= rank of second input.");

639
  if (x_dims == y_dims_untrimed) {
F
fengjiayi 已提交
640 641 642 643
    functor.Run();
    return;
  }

644
  axis = (axis == -1 ? x_dims.size() - y_dims_untrimed.size() : axis);
F
fengjiayi 已提交
645 646
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");
647
  auto y_dims = trim_trailing_singular_dims(y_dims_untrimed);
648
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
F
fengjiayi 已提交
649 650

  int pre, n, post;
651
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
F
fengjiayi 已提交
652 653 654 655 656 657 658 659 660
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

661 662
}  // namespace operators
}  // namespace paddle