sum_op.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13

14
#include <algorithm>
M
minqiyang 已提交
15
#include <memory>
16
#include <string>
17
#include <vector>
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
21

22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

26 27 28 29 30 31 32 33
namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
35
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
36

Q
Qiao Longfei 已提交
37 38
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
39 40
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
41
            framework::proto::VarType::LOD_TENSOR_ARRAY) {
42 43
      return;  // skip runtime infershape when is tensor array;
    }
44

45
    auto x_var_types = ctx->GetInputsVarType("X");
46
    auto x_dims = ctx->GetInputsDim("X");
47

Q
Qiao Longfei 已提交
48
    size_t N = x_dims.size();
49 50
    PADDLE_ENFORCE_GT(N, 0, "Input tensors count should > 0.");
    if (N == 1) {
M
minqiyang 已提交
51
      VLOG(3) << "Warning: sum have only one input, may waste memory";
52
    }
Q
qiaolongfei 已提交
53

54
    framework::DDim in_dim({0});
55
    for (size_t i = 0; i < x_dims.size(); ++i) {
56 57 58 59
      auto& x_dim = x_dims[i];
      // x_dim.size() == 1 means the real dim of selected rows is [0]
      if (x_var_types[i] == framework::proto::VarType::SELECTED_ROWS &&
          x_dim.size() == 1) {
60 61
        continue;
      }
62 63 64 65 66 67 68 69
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
        PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape");
      }
Q
qijun 已提交
70
    }
Q
Qiao Longfei 已提交
71 72
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
73
  }
74 75

 protected:
76
  framework::OpKernelType GetExpectedKernelType(
77 78
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
C
chengduo 已提交
79
    auto x_vars_name = ctx.Inputs("X");
80 81 82 83 84 85 86 87 88 89 90 91

    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

92
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
93
      int dtype = -1;
C
chengduo 已提交
94 95 96
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
        PADDLE_ENFORCE(x_vars[idx] != nullptr,
                       "Input var[%s] should not be nullptr", x_vars_name[idx]);
C
chengduo 已提交
97 98
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
99
        if (tensor->numel() == 0) {
100 101 102
          continue;
        }
        if (dtype == -1) {
Y
Yu Yang 已提交
103
          dtype = tensor->type();
104
        } else {
Y
Yu Yang 已提交
105
          PADDLE_ENFORCE_EQ(dtype, tensor->type());
106 107 108 109 110
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
                        "Sum operator should have at least one tensor");

111
      return framework::OpKernelType(
112 113
          static_cast<framework::proto::VarType::Type>(dtype), ctx.GetPlace(),
          layout, library);
114
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
115 116 117
      for (auto& var : x_vars) {
        auto& value = var->Get<framework::SelectedRows>().value();
        if (value.IsInitialized()) {
Y
Yu Yang 已提交
118 119
          return framework::OpKernelType(value.type(), ctx.device_context(),
                                         layout, library);
120 121 122 123
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
124
                                     ctx.device_context(), layout, library);
125
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
126 127 128 129
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
          if (each.numel() != 0) {
Y
Yu Yang 已提交
130 131
            return framework::OpKernelType(each.type(), ctx.device_context(),
                                           layout, library);
Y
Yang Yang(Tony) 已提交
132
          }
133 134
        }
      }
Y
Yang Yang(Tony) 已提交
135
      PADDLE_THROW("Cannot find the input data type by all input data");
136 137
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
S
sneaxiy 已提交
138
                 framework::ToTypeName(x_vars[0]->Type()));
139
  }
140 141 142 143
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
144
  void Make() override {
145 146
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
147
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
148 149 150
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
151
    AddComment(R"DOC(
152
Sum operator.
153

154 155
This operators sums the input tensors. All the inputs can carry the
LoD (Level of Details) information. However, the output only shares
156
the LoD information with the first input.
157
)DOC");
158 159 160
  }
};

Q
QI JUN 已提交
161 162
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
163 164
  void operator()(framework::InferVarTypeContext& ctx) const override {
    auto& inputs = ctx.Input("X");
165
    auto var_type = framework::proto::VarType::SELECTED_ROWS;
M
minqiyang 已提交
166 167
    for (auto& name : ctx.Input("X")) {
      VLOG(10) << name << " " << ctx.GetType(name);
Y
Yang Yang(Tony) 已提交
168 169
    }

Q
QI JUN 已提交
170
    bool any_input_is_lod_tensor = std::any_of(
M
minqiyang 已提交
171 172
        inputs.begin(), inputs.end(), [ctx](const std::string& name) {
          return ctx.GetType(name) == framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
173
        });
174

M
minqiyang 已提交
175 176
    auto is_tensor_array = [ctx](const std::string& name) {
      return ctx.GetType(name) == framework::proto::VarType::LOD_TENSOR_ARRAY;
177 178 179 180 181 182 183 184
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
185 186 187
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
M
minqiyang 已提交
188
          os << "    " << each << " type is " << ctx.GetType(each) << "\n";
Y
Yang Yang(Tony) 已提交
189 190 191 192
        }
        PADDLE_ENFORCE(all_inputs_are_tensor_array,
                       "Not all inputs are tensor array:\n%s", os.str());
      }
193
      var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
194
    } else if (any_input_is_lod_tensor) {
195
      var_type = framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
196 197
    }

M
minqiyang 已提交
198 199 200
    auto out_var_name = ctx.Output("Out").front();
    ctx.SetType(out_var_name, var_type);
    ctx.SetDataType(out_var_name, ctx.GetDataType(inputs.front()));
Q
QI JUN 已提交
201 202 203
  }
};

204
class SumGradMaker : public framework::GradOpDescMakerBase {
205
 public:
206
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
207

Y
Yu Yang 已提交
208
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
209
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
210
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
211 212 213 214
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
215
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
216 217 218 219
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
220
                     return std::unique_ptr<framework::OpDesc>(grad_op);
221 222
                   });
    return grad_ops;
223 224 225 226 227 228 229
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
230

Q
QI JUN 已提交
231 232
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
233

Q
QI JUN 已提交
234 235 236 237 238
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);