activation.py 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17 18
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
19 20
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
21
from paddle.framework import get_default_dtype
22
from .. import functional as F
Z
zhiboniu 已提交
23
from paddle.nn import Layer
24

25 26
__all__ = []

27

Z
zhiboniu 已提交
28
class ELU(Layer):
29
    r"""
30 31
    ELU Activation.

32
    .. math::
33

34 35 36 37 38 39 40
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
41 42 43 44 45

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
46

47 48 49
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
50

51 52 53
    Examples:
        .. code-block:: python

54
            import paddle
55

Z
zhupengyang 已提交
56
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
57 58 59 60
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
61 62 63 64 65 66 67 68 69 70
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

71 72 73 74
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

75

Z
zhiboniu 已提交
76
class GELU(Layer):
77
    r"""
78 79 80 81
    GELU Activation.

    If approximate is True

82
    .. math::
83

84
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
85 86 87

    else

88
    .. math::
89

90
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
91 92 93 94 95

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
96

97 98 99
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
100

101 102 103
    Examples:
        .. code-block:: python

104 105
            import paddle
            import numpy as np
106

107
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
108

109 110
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
111

112 113
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
114 115 116 117 118 119 120 121 122 123
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

124 125 126 127
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

128

Z
zhiboniu 已提交
129
class Hardshrink(Layer):
130
    r"""
131 132 133 134 135
    Hardshrink Activation

    .. math::

        hardshrink(x)=
136 137 138 139 140 141 142
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
143 144 145 146 147 148 149 150 151 152 153 154 155 156

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

157
            import paddle
158

Z
zhupengyang 已提交
159
            x = paddle.to_tensor([-1, 0.3, 2.5])
160 161
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
162 163 164 165 166 167 168 169
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
170
        return F.hardshrink(x, self._threshold, self._name)
171

172 173 174 175
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

176

Z
zhiboniu 已提交
177
class Hardswish(Layer):
178
    r"""
179 180 181 182 183 184 185 186 187
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
188 189 190 191 192 193 194 195
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
            
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

223 224 225 226
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

227

Z
zhiboniu 已提交
228
class Tanh(Layer):
229
    r"""
W
WangXi 已提交
230 231 232
    Tanh Activation.

    .. math::
233
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
253
            print(out)
W
WangXi 已提交
254 255 256 257 258 259 260 261 262 263
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

264 265 266 267
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
268

Z
zhiboniu 已提交
269
class Hardtanh(Layer):
270
    r"""
271 272 273 274
    Hardtanh Activation

    .. math::

275 276 277 278 279 280 281 282 283
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

284 285 286 287 288 289

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
290

291 292 293
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
294

295 296 297 298 299
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
300
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
301
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
302
            out = m(x) # [-1., 0.3, 1.]
303 304 305 306 307 308 309 310 311 312 313
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

314 315 316 317
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

318

Z
zhiboniu 已提交
319
class PReLU(Layer):
320 321 322 323 324 325 326 327 328
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
329
            1 - a single parameter `alpha` is used for all input channels;
330 331 332
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
333
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
334
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
335 336
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
337

338
    Shape:
Q
Qi Li 已提交
339
        - input: Tensor with any shape. Default dtype is float32.
340
        - output: Tensor with the same shape as input.
341

342 343 344 345 346 347
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
348
            paddle.set_default_dtype("float64")
349 350 351 352 353 354

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
355
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
377 378
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
379
            is_bias=False,
Q
Qi Li 已提交
380
            default_initializer=Constant(self._init))
381 382 383 384

    def forward(self, x):
        return F.prelu(x, self._weight)

385 386 387 388 389
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'num_parameters={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._init, self._dtype, name_str)

390

Z
zhiboniu 已提交
391
class ReLU(Layer):
392 393 394
    """
    ReLU Activation.

395
    .. math::
396

397
        ReLU(x) = max(x, 0)
398 399

    Parameters:
400 401 402 403 404 405
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
406

407 408 409
    Examples:
        .. code-block:: python

410
            import paddle
411

Z
zhupengyang 已提交
412
            x = paddle.to_tensor([-2., 0., 1.])
413 414
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
415 416
    """

417
    def __init__(self, name=None):
418
        super(ReLU, self).__init__()
419
        self._name = name
420

421 422
    def forward(self, x):
        return F.relu(x, self._name)
423

424 425 426 427
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

428

Z
zhiboniu 已提交
429
class ReLU6(Layer):
430 431 432 433 434
    """
    ReLU6 Activation

    .. math::

435
        ReLU6(x) = min(max(0,x), 6)
436 437 438 439 440 441 442 443 444 445 446 447

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

448 449
            import paddle
            import numpy as np
450

451 452 453
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
454 455 456 457 458 459 460 461 462
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

463 464 465 466
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

467

Z
zhiboniu 已提交
468
class SELU(Layer):
469
    r"""
470 471 472 473
    SELU Activation

    .. math::

474
        SELU(x)= scale *
475 476 477 478 479 480
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
481 482

    Parameters:
483 484
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
485 486 487 488 489 490 491 492 493 494
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

495 496
            import paddle
            import numpy as np
497

498
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
499 500
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
501 502 503 504 505 506 507 508 509 510 511 512 513 514
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

515 516 517 518 519
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

520

Z
zhiboniu 已提交
521
class LeakyReLU(Layer):
522
    r"""
C
ceci3 已提交
523 524
    Leaky ReLU Activation.

525
    .. math::
C
ceci3 已提交
526

527
        LeakyReLU(x)=
528 529 530 531 532 533 534
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
535 536

    Parameters:
537 538
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
539 540
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
541

542 543 544
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
545

C
ceci3 已提交
546 547 548
    Examples:
        .. code-block:: python

549
            import paddle
C
Chen Long 已提交
550
            import numpy as np
551

552
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
553
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
554
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
555 556
    """

557
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
558
        super(LeakyReLU, self).__init__()
559
        self._negative_slope = negative_slope
560
        self._name = name
C
ceci3 已提交
561

562
    def forward(self, x):
563
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
564

565 566 567 568
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
569

Z
zhiboniu 已提交
570
class Sigmoid(Layer):
571
    """
572
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
573

574
    .. math::
S
swtkiwi 已提交
575

576
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
577

578 579
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
580

581 582
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
583 584

    Returns:
585
        A callable object of Sigmoid.
586

587
    Examples:
588

589 590
        .. code-block:: python

591 592 593
          import paddle

          m = paddle.nn.Sigmoid()
594 595
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
596 597
    """

598
    def __init__(self, name=None):
599
        super(Sigmoid, self).__init__()
600
        self.name = name
601

602 603
    def forward(self, x):
        return F.sigmoid(x, self.name)
604

605 606 607 608
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

609

Z
zhiboniu 已提交
610
class Hardsigmoid(Layer):
611
    r"""
612 613 614 615 616 617 618 619 620
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
621 622 623 624 625 626 627 628
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
645
          m = paddle.nn.Hardsigmoid()
646 647 648 649 650 651 652 653 654
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
655
        return F.hardsigmoid(x, name=self.name)
656

657 658 659 660
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

661

Z
zhiboniu 已提交
662
class Softplus(Layer):
663
    r"""
664 665 666 667
    Softplus Activation

    .. math::

668 669
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
670 671

    Parameters:
672 673
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
674 675 676 677 678 679 680 681 682 683
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

684 685
            import paddle
            import numpy as np
686

687 688 689
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
690 691 692 693 694 695 696 697 698 699 700
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

701 702 703 704 705
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

706

Z
zhiboniu 已提交
707
class Softshrink(Layer):
708
    r"""
709 710 711 712
    Softshrink Activation

    .. math::

713 714 715 716 717 718 719 720 721
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

722 723

    Parameters:
724
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
725 726 727 728 729 730 731 732 733 734
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

735 736
            import paddle
            import numpy as np
737

738 739 740
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
741 742 743 744 745 746 747 748 749 750
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

751 752 753 754
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

755

Z
zhiboniu 已提交
756
class Softsign(Layer):
757
    r"""
758 759 760 761
    Softsign Activation

    .. math::

762
        Softsign(x) = \frac{x}{1 + |x|}
763 764 765 766 767 768 769 770 771 772 773 774

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

775 776
            import paddle
            import numpy as np
777

778 779 780
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
781 782 783 784 785 786 787 788 789
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

790 791 792 793
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

794

Z
zhiboniu 已提交
795
class Swish(Layer):
796
    r"""
797 798 799 800
    Swish Activation.

    .. math::

801
        Swish(x) = \frac{x}{1 + e^{-x}}
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

829 830 831 832
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

833

Z
zhiboniu 已提交
834
class Tanhshrink(Layer):
835 836 837 838 839
    """
    Tanhshrink Activation

    .. math::

840
        Tanhshrink(x) = x - tanh(x)
841 842 843 844 845 846 847 848 849 850 851 852

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

853 854
            import paddle
            import numpy as np
855

856 857 858
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
859 860 861 862 863 864 865 866 867
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

868 869 870 871
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

872

Z
zhiboniu 已提交
873
class ThresholdedReLU(Layer):
874
    r"""
875 876 877 878
    Thresholded ReLU Activation

    .. math::

879 880 881 882 883 884 885 886
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

916 917 918 919
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

920

Z
zhiboniu 已提交
921
class Silu(Layer):
M
minghaoBD 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
959
class LogSigmoid(Layer):
960
    r"""
961
    LogSigmoid Activation.
962

963
    .. math::
964

965
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
966 967 968 969 970

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
971

972 973 974
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
975

976 977 978
    Examples:
        .. code-block:: python

979
            import paddle
980

981
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
982 983
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
984 985 986 987 988 989 990
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
991
        return F.log_sigmoid(x, self._name)
992

993 994 995 996
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

997

Z
zhiboniu 已提交
998
class Softmax(Layer):
999
    r"""
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1027
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1120 1121 1122 1123
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1124

Z
zhiboniu 已提交
1125
class LogSoftmax(Layer):
1126
    r"""
1127 1128 1129 1130
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1131 1132 1133 1134
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1135 1136

    Parameters:
1137 1138 1139 1140 1141 1142
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1143

1144 1145 1146
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1147 1148 1149 1150

    Examples:
        .. code-block:: python

1151 1152
            import paddle

Z
zhupengyang 已提交
1153 1154 1155 1156 1157 1158
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1159 1160 1161 1162 1163 1164 1165 1166 1167
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1168 1169
    """

1170
    def __init__(self, axis=-1, name=None):
1171 1172
        super(LogSoftmax, self).__init__()
        self._axis = axis
1173
        self._name = name
1174

1175 1176
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1177

1178 1179 1180 1181
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1182

Z
zhiboniu 已提交
1183
class Maxout(Layer):
1184
    r"""
1185 1186 1187 1188 1189 1190 1191 1192
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1193 1194 1195 1196 1197 1198 1199 1200
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1244 1245 1246 1247

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)