test_multiprocess_dataloader_static.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os
import sys
import six
import time
import unittest
import multiprocessing
import numpy as np

25
import paddle
26 27 28
import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader

29 30 31 32
EPOCH_NUM = 3
BATCH_SIZE = 8
IMAGE_SIZE = 32
SAMPLE_NUM = 100
33 34 35 36
CLASS_NUM = 10


class RandomDataset(Dataset):
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    def __init__(self, sample_num, class_num):
        self.sample_num = sample_num
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, self.class_num - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


def simple_fc_net_static():
    startup_prog = fluid.Program()
    main_prog = fluid.Program()
    startup_prog.random_seed = 1
    main_prog.random_seed = 1

    with fluid.unique_name.guard():
        with fluid.program_guard(main_prog, startup_prog):
60 61 62
            image = fluid.data(name='image',
                               shape=[None, IMAGE_SIZE],
                               dtype='float32')
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            hidden = image
            param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.8))
            bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.5))
            for hidden_size in [10, 20, 30]:
                hidden = fluid.layers.fc(hidden,
                                         size=hidden_size,
                                         act='tanh',
                                         param_attr=param_attr,
                                         bias_attr=bias_attr)

            predict_label = fluid.layers.fc(hidden,
                                            size=CLASS_NUM,
                                            act='softmax',
                                            param_attr=param_attr,
                                            bias_attr=bias_attr)
            loss = fluid.layers.reduce_mean(
82
                fluid.layers.cross_entropy(input=predict_label, label=label))
83 84 85 86 87 88

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)
    return startup_prog, main_prog, image, label, loss


89 90 91 92 93 94
def prepare_places(with_data_parallel, with_cpu=False, with_gpu=True):
    places = []
    if with_cpu:
        places.append([fluid.CPUPlace()])
        if with_data_parallel:
            places.append([fluid.CPUPlace()] * 2)
95

96 97 98
    if with_gpu and fluid.core.is_compiled_with_cuda():
        tmp = fluid.cuda_places()[:2]
        assert len(tmp) > 0, "no gpu detected"
K
Kaipeng Deng 已提交
99
        if with_data_parallel and len(tmp) > 1:
100 101 102
            places.append(tmp)
        places.append([tmp[0]])
    return places
103 104 105


class TestStaticDataLoader(unittest.TestCase):
106

K
Kaipeng Deng 已提交
107
    def run_main(self, num_workers, places, persistent_workers, use_pe=True):
108 109 110 111 112
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
113 114 115 116 117 118 119 120
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    places=places,
                                    num_workers=num_workers,
                                    batch_size=BATCH_SIZE,
                                    return_list=False,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
121 122 123 124 125
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

126 127 128
            if use_pe:
                prog = fluid.CompiledProgram(main_prog)
                if len(places) > 1:
129 130
                    prog = prog.with_data_parallel(loss_name=loss.name,
                                                   places=places)
131 132
            else:
                prog = main_prog
133 134 135 136 137 138 139 140 141 142 143 144 145 146

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
                        len(d), len(places))
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
147 148
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
                    L, = exe.run(program=prog,
                                 feed=d,
                                 fetch_list=[loss],
                                 use_program_cache=True)
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
167
        for p in prepare_places(True):
K
Kaipeng Deng 已提交
168 169 170 171 172 173
            for persistent_workers in [True, False]:
                results = []
                for num_workers in [0, 2]:
                    print(self.__class__.__name__, p, num_workers,
                          persistent_workers)
                    sys.stdout.flush()
174 175 176
                    ret = self.run_main(num_workers=num_workers,
                                        places=p,
                                        persistent_workers=persistent_workers)
K
Kaipeng Deng 已提交
177 178 179 180 181
                    results.append(ret)
                diff = np.max(
                    np.abs(results[0]['loss'] - results[1]['loss']) /
                    np.abs(results[0]['loss']))
                self.assertLess(diff, 1e-2)
182 183


184
class TestStaticDataLoaderReturnList(unittest.TestCase):
185

186
    def run_single_place(self, num_workers):
187
        scope = fluid.Scope()
188 189 190
        image = fluid.data(name='image',
                           shape=[None, IMAGE_SIZE],
                           dtype='float32')
191 192 193
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
194 195
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
196
                                    num_workers=num_workers,
197 198 199
                                    batch_size=BATCH_SIZE,
                                    drop_last=True,
                                    return_list=True)
200 201 202 203 204 205 206

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert not isinstance(d[0], list)
                assert not isinstance(d[1], list)

207
    def run_multi_place(self, num_workers):
208
        scope = fluid.Scope()
209 210 211
        image = fluid.data(name='image',
                           shape=[None, IMAGE_SIZE],
                           dtype='float32')
212 213 214
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
215 216
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
217
                                    num_workers=num_workers,
218 219 220 221
                                    batch_size=BATCH_SIZE,
                                    places=[fluid.CPUPlace()] * 2,
                                    drop_last=True,
                                    return_list=True)
222 223 224 225 226 227 228

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert isinstance(d[0], list)
                assert isinstance(d[1], list)

229 230 231 232 233 234
    def test_main(self):
        paddle.enable_static()
        for num_workers in [0, 2]:
            self.run_single_place(num_workers)
            self.run_multi_place(num_workers)

235

236
class RandomBatchedDataset(Dataset):
237

238 239 240 241 242 243 244 245 246 247
    def __init__(self, sample_num, class_num):
        self.sample_num = int(sample_num / BATCH_SIZE)
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        images = []
        labels = []
        for _ in range(BATCH_SIZE):
            image = np.random.random([IMAGE_SIZE]).astype('float32')
248 249
            label = np.random.randint(0, self.class_num - 1,
                                      (1, )).astype('int64')
250 251 252 253 254 255 256 257 258
            images.append(image)
            labels.append(label)
        return np.stack(images, axis=0), np.stack(labels, axis=0)

    def __len__(self):
        return self.sample_num


class TestStaticDataLoaderWithBatchedDataset(TestStaticDataLoader):
259

K
Kaipeng Deng 已提交
260
    def run_main(self, num_workers, places, persistent_workers):
261 262 263 264 265
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM)
266 267 268 269 270 271 272 273
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    places=places,
                                    num_workers=num_workers,
                                    batch_size=None,
                                    return_list=False,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
274 275 276 277 278 279 280
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
            if len(places) > 1:
281 282
                prog = prog.with_data_parallel(loss_name=loss.name,
                                               places=places)
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
                        len(d), len(places))
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
                    L, = exe.run(program=prog,
                                 feed=d,
                                 fetch_list=[loss],
                                 use_program_cache=True)
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret


317 318
if __name__ == '__main__':
    unittest.main()