analyzer_transformer_tester.cc 8.3 KB
Newer Older
T
Tao Luo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

struct DataRecord {
  std::vector<std::vector<int64_t>> src_word, src_pos, trg_word, init_idx;
  std::vector<std::vector<float>> src_slf_attn_bias, init_score,
      trg_src_attn_bias;
  std::vector<std::vector<int32_t>> batch_data_shape;
  std::vector<std::vector<size_t>> lod;
  size_t batch_iter{0}, batch_size{1}, num_samples;  // total number of samples
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= src_word.size()) {
      data.src_word.assign(src_word.begin() + batch_iter,
                           src_word.begin() + batch_end);
      data.src_pos.assign(src_pos.begin() + batch_iter,
                          src_pos.begin() + batch_end);
      data.src_slf_attn_bias.assign(src_slf_attn_bias.begin() + batch_iter,
                                    src_slf_attn_bias.begin() + batch_end);
      data.trg_word.assign(trg_word.begin() + batch_iter,
                           trg_word.begin() + batch_end);
      data.init_score.assign(init_score.begin() + batch_iter,
                             init_score.begin() + batch_end);
      data.init_idx.assign(init_idx.begin() + batch_iter,
                           init_idx.begin() + batch_end);
      data.trg_src_attn_bias.assign(trg_src_attn_bias.begin() + batch_iter,
                                    trg_src_attn_bias.begin() + batch_end);
      std::vector<int32_t> batch_shape =
          *(batch_data_shape.begin() + batch_iter);
      data.batch_data_shape.push_back(batch_shape);
      data.lod.resize(2);
      for (int i = 0; i < batch_shape[0] + 1; i++) {
        data.lod[0].push_back(i);
        data.lod[1].push_back(i);
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    size_t num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ',', &data);
      CHECK_EQ(data.size(), static_cast<size_t>(8));
      // load src_word
      std::vector<int64_t> src_word_data;
      split_to_int64(data[0], ' ', &src_word_data);
      src_word.push_back(std::move(src_word_data));
      // load src_pos
      std::vector<int64_t> src_pos_data;
      split_to_int64(data[1], ' ', &src_pos_data);
      src_pos.push_back(std::move(src_pos_data));
      // load src_slf_attn_bias
      std::vector<float> src_slf_attn_bias_data;
      split_to_float(data[2], ' ', &src_slf_attn_bias_data);
      src_slf_attn_bias.push_back(std::move(src_slf_attn_bias_data));
      // load trg_word
      std::vector<int64_t> trg_word_data;
      split_to_int64(data[3], ' ', &trg_word_data);
      trg_word.push_back(std::move(trg_word_data));
      // load init_score
      std::vector<float> init_score_data;
      split_to_float(data[4], ' ', &init_score_data);
      init_score.push_back(std::move(init_score_data));
      // load init_idx
      std::vector<int64_t> init_idx_data;
      split_to_int64(data[5], ' ', &init_idx_data);
      init_idx.push_back(std::move(init_idx_data));
      // load trg_src_attn_bias
      std::vector<float> trg_src_attn_bias_data;
      split_to_float(data[6], ' ', &trg_src_attn_bias_data);
      trg_src_attn_bias.push_back(std::move(trg_src_attn_bias_data));
      // load shape for variant data shape
      std::vector<int> batch_data_shape_data;
      split_to_int(data[7], ' ', &batch_data_shape_data);
      batch_data_shape.push_back(std::move(batch_data_shape_data));
    }
    num_samples = num_lines;
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  auto one_batch = data->NextBatch();
  batch_size = one_batch.batch_data_shape[0][0];
  auto n_head = one_batch.batch_data_shape[0][1];
  auto trg_seq_len = one_batch.batch_data_shape[0][2];  // 1 for inference
  auto src_seq_len = one_batch.batch_data_shape[0][3];

  PaddleTensor src_word, src_pos, src_slf_attn_bias, trg_word, init_score,
      init_idx, trg_src_attn_bias;

  src_word.name = "src_word";
  src_word.shape.assign({batch_size, src_seq_len, 1});
  src_word.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&src_word, one_batch.src_word);

  src_pos.name = "src_pos";
  src_pos.shape.assign({batch_size, src_seq_len, 1});
  src_pos.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&src_pos, one_batch.src_pos);

  src_slf_attn_bias.name = "src_slf_attn_bias";
  src_slf_attn_bias.shape.assign(
      {batch_size, n_head, src_seq_len, src_seq_len});
  src_slf_attn_bias.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&src_slf_attn_bias, one_batch.src_slf_attn_bias);

  trg_word.name = "trg_word";
  trg_word.shape.assign({batch_size, 1});
  trg_word.dtype = PaddleDType::INT64;
  trg_word.lod.assign(one_batch.lod.begin(), one_batch.lod.end());
  TensorAssignData<int64_t>(&trg_word, one_batch.trg_word);

  init_score.name = "init_score";
  init_score.shape.assign({batch_size, 1});
  init_score.dtype = PaddleDType::FLOAT32;
  init_score.lod.assign(one_batch.lod.begin(), one_batch.lod.end());
  TensorAssignData<float>(&init_score, one_batch.init_score);

  init_idx.name = "init_idx";
  init_idx.shape.assign({batch_size});
150
  init_idx.dtype = PaddleDType::INT32;
T
Tao Luo 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  TensorAssignData<int64_t>(&init_idx, one_batch.init_idx);

  trg_src_attn_bias.name = "trg_src_attn_bias";
  trg_src_attn_bias.shape.assign(
      {batch_size, n_head, trg_seq_len, src_seq_len});
  trg_src_attn_bias.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&trg_src_attn_bias, one_batch.trg_src_attn_bias);

  input_slots->assign({src_word, src_pos, src_slf_attn_bias, trg_word,
                       init_score, init_idx, trg_src_attn_bias});
}

void SetConfig(AnalysisConfig *cfg) {
  cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int test_batch_num =
      FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "The number of samples to be test: "
            << test_batch_num * FLAGS_batch_size;
  for (int bid = 0; bid < test_batch_num; ++bid) {
    input_slots.clear();
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
TEST(Analyzer_Transformer, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
}

// Check the fuse status
TEST(Analyzer_Transformer, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_Transformer, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

}  // namespace inference
}  // namespace paddle