layers.py 7.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5
from paddle.v2.framework.layer_helper import LayerHelper
import paddle.v2.framework.core as core
from paddle.v2.framework.framework import OpProtoHolder, Variable
import re

F
fengjiayi 已提交
6
__all__ = ['fc', 'data', 'cross_entropy', 'conv2d', 'pool2d']
Y
Yu Yang 已提交
7 8


F
fengjiayi 已提交
9 10 11 12 13 14 15
def fc(input,
       size,
       param_attr=None,
       bias_attr=True,
       name=None,
       act=None,
       num_flatten_dims=1,
Q
QI JUN 已提交
16 17
       program=None,
       init_program=None):
Y
Yu Yang 已提交
18 19 20 21 22 23 24 25 26 27
    # create helper
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    # mul
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = list(input_shape[num_flatten_dims:]) + [size]
28

Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
F
fengjiayi 已提交
39 40 41 42
            attrs={
                'x_num_col_dims': num_flatten_dims,
                'y_num_col_dims': len(input_shape) - num_flatten_dims
            })
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


F
fengjiayi 已提交
58 59 60 61
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
62
         append_batch_size=True,
Q
QI JUN 已提交
63 64
         program=None,
         init_program=None):
Y
Yu Yang 已提交
65
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
66 67
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    return helper.create_global_variable(
        name=name, shape=shape, dtype=data_type, type=type)


def _convert_(name):
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _create_op_func_(op_type):
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    if len(op_proto.outputs) != 1:
        raise ValueError(
            "Only one output operator can be automatically generated")

    if op_proto.outputs[0].duplicable:
        raise ValueError(
            "Only not duplicable op can be automatically generated")

    o_name = op_proto.outputs[0].name

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)
        inputs = dict()
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
            inputs[ipt.name] = val

        out = helper.create_tmp_variable(dtype=dtype)
        helper.append_op(
            type=op_type, inputs=inputs, outputs={o_name: [out]}, attrs=kwargs)
        return out

    func.__name__ = op_type
    globals()[op_type] = func
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
122
_create_op_func_('mul')
Y
Yu Yang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152


def cross_entropy(input, label, **kwargs):
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='pow',
        inputs={'X': [minus_out]},
        outputs={'Y': [square_out]},
        attrs={'factor': 2.0})
    return square_out
153 154


F
fengjiayi 已提交
155 156 157 158 159 160 161 162 163 164
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
Q
QI JUN 已提交
165 166
           program=None,
           init_program=None):
167 168 169 170 171 172 173 174 175 176 177
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
178 179 180 181 182 183 184
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

    pre_act = helper.append_bias_op(pre_bias)

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
205 206 207 208 209 210 211 212


def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
Q
QI JUN 已提交
213 214
           program=None,
           init_program=None):
F
fengjiayi 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out