eager_method.cc 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21 22
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
23 24
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
25
#include "paddle/fluid/eager/utils.h"
26
#include "paddle/fluid/framework/convert_utils.h"
27 28 29 30 31 32
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
33 34 35 36
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
37 38 39
namespace paddle {
namespace pybind {

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
namespace py = ::pybind11;

class PyTensorHook : public egr::TensorHook {
 public:
  explicit PyTensorHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  paddle::experimental::Tensor operator()(
      const paddle::experimental::Tensor& var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorHook for var " << var.name();

    PyObject* res = nullptr;
    try {
      res = PyObject_CallFunctionObjArgs(py_func_, ToPyObject(var), nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }
    return reinterpret_cast<TensorObject*>(res)->tensor;
  }

 private:
  PyObject* py_func_;
};

class PyTensorVoidHook : public egr::TensorVoidHook {
 public:
  explicit PyTensorVoidHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorVoidHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  void operator()() override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorVoidHook";

    try {
      PyObject_CallFunctionObjArgs(py_func_, nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }
  }

 private:
  PyObject* py_func_;
};

116 117 118
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
                                     bool zero_copy);
119

120
extern PyTypeObject* p_tensor_type;
121

122 123 124
static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
125
  PADDLE_ENFORCE_EQ(
126
      self->tensor.initialized(), true,
127 128 129
      platform::errors::InvalidArgument(
          "Tensor data of %s is Empty that indicates we have null tensor for "
          "now, please check if it has no data and initialize it first.",
130 131 132
          self->tensor.name()));
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
133
  auto sizeof_dtype = paddle::framework::DataTypeSize(self->tensor.type());
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
  auto& api = pybind11::detail::npy_api::get();
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

150
  if (self->tensor.is_cpu()) {
151
    auto dense_tensor =
152
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
153 154 155 156 157 158
    platform::CPUPlace place;
    // deep copy
    paddle::memory::Copy(place, reinterpret_cast<void*>(
                                    pybind11::detail::array_proxy(array)->data),
                         place, dense_tensor->data(), sizeof_dtype * numel);
#if defined(PADDLE_WITH_CUDA)
159
  } else if (self->tensor.is_cuda()) {
160
    auto dense_tensor =
161
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
162 163 164

    paddle::platform::GpuMemcpySync(
        pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
165 166
        paddle::framework::DataTypeSize(dense_tensor->dtype()) *
            dense_tensor->numel(),
167 168 169 170 171 172 173 174 175 176 177 178 179
        cudaMemcpyDeviceToHost);
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

180 181 182 183
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
184
  return ToPyObject(self->tensor.initialized());
185 186 187
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

188 189 190
static PyObject* tensor_method__copy_to(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
191 192 193
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
  auto cp_tensor =
194
      self->tensor.copy_to(phi::TransToPtenBackend(place), blocking);
195 196 197
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
198
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
199 200 201 202
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

203 204 205 206
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
207 208 209
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
210 211
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
212
  self->tensor = src_tensor;
213 214

  // Recover source name
215
  self->tensor.set_name(orig_name);
216 217

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
218
          << " to " << self->tensor.name();
219 220 221 222 223
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

224 225 226
static PyObject* tensor_method_copy_(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
227 228
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
229
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
230
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
231 232 233
          << self->tensor.name();
  if (!self->tensor.defined()) {
    egr::EagerUtils::autograd_meta(&(self->tensor))
234 235
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
236
    egr::EagerUtils::autograd_meta(&(self->tensor))
237 238 239 240
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
  }

241
  self->tensor.copy_(src_tensor, blocking);
242

243
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
244
          << self->tensor.name();
245 246 247 248 249
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

250 251
static PyObject* tensor_retain_grads(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
252
  EAGER_TRY
253
  if (egr::Controller::Instance().HasGrad()) {
254
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
255
    if (!meta->GetMutableGradNode()) {
256
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
257
              << "become accumulation node";
258
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
259
    }
260
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
261
  }
262 263 264 265 266
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

267 268
static PyObject* tensor_clear_gradient(TensorObject* self, PyObject* args,
                                       PyObject* kwargs) {
269
  EAGER_TRY
270
  VLOG(4) << "ClearGradient " << self->tensor.name();
271

272 273 274 275 276 277
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

278 279
  paddle::experimental::Tensor* grad;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
280 281 282 283 284 285
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
286
  } else {
287
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
288
    grad = meta->MutableGrad();
289 290
  }

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  if (grad->is_selected_rows()) {
    auto selected_rows =
        std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
    if (selected_rows->mutable_value()->IsInitialized()) {
      selected_rows->mutable_rows()->clear();
      selected_rows->mutable_value()->clear();
    }
  } else if (grad->is_dense_tensor()) {
    if (grad->initialized()) {
      if (set_to_zero) {
        grad->set_impl(paddle::experimental::zeros_like(*grad).impl());
      } else {
        VLOG(4) << "Gradient of " << self->tensor.name()
                << " is initialized, will be released.";
        auto dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
        dense_tensor->MoveMemoryHolder();
      }
    }
310
  }
311

312 313 314 315 316
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

317 318
static PyObject* tensor__zero_grads(TensorObject* self, PyObject* args,
                                    PyObject* kwargs) {
319
  EAGER_TRY
320
  VLOG(4) << "ZeroGrads " << self->tensor.name();
321

322
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
323
    // Add RetainGrad as PostHook to AccumulationNode
324 325 326 327 328 329 330 331 332
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
      grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
333
    }
334
  } else {
335
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
336
    if (meta->MutableGrad()->initialized()) {
337 338
      meta->MutableGrad()->set_impl(
          paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
339
    }
340 341 342 343 344 345 346
  }

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

347 348 349
static PyObject* tensor__share_buffer_to(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
350 351 352
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
353 354 355
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
356
                        self->tensor.name()));
357
  auto* src_tensor =
358
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
359 360 361 362
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  dst_tensor->ShareDataWith(*src_tensor);
  dst_tensor->ShareDataTypeWith(*src_tensor);
363 364 365 366 367
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

368 369 370 371
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
372 373 374
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
375 376 377
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
378
                        self->tensor.name()));
379
  bool res = false;
380
  if (!self->tensor.defined() || !dst_ptr->defined()) {
381 382 383
    return ToPyObject(res);
  }
  auto* self_ptr =
384
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
385 386 387 388 389 390 391
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

392 393 394 395
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
396 397 398
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
399 400 401
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
402 403
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
404 405 406 407 408
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

409 410 411 412
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
413 414
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
415 416 417 418 419 420
  PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
421
  if (!self->tensor.defined() || !src_tensor.defined()) {
422 423
    return ToPyObject(res);
  }
424
  res = (self->tensor.impl().get() == src_tensor.impl().get());
425 426 427 428
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

429 430 431
static PyObject* tensor_method_detach(TensorObject* self, PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
432
  PADDLE_ENFORCE_EQ(
433
      self->tensor.initialized(), true,
434
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
435
                                        self->tensor.name()));
436

437
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
438
  if (obj) {
439 440 441 442 443 444
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
445 446 447 448 449 450 451 452 453 454
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

455 456 457 458
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
459 460 461
  if (self->tensor.is_dense_tensor()) {
    auto* tensor =
        static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
462 463 464 465 466 467 468 469 470
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
    Py_IncRef(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

471
// NOTE(wuweilong): Set value and not change self's original place
472 473
static PyObject* tensor_method_set_value(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
474
  EAGER_TRY
475
  VLOG(4) << "Value " << self->tensor.name();
476 477
  pybind11::object numpy_value =
      pybind11::object(pybind11::handle(PyTuple_GET_ITEM(args, 0)), true);
478
  InitTensorWithNumpyValue(self, numpy_value, false);
479 480 481 482 483
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation."));
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_remove_grad_hook(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_register_reduce_hook(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor), true,
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
      true, platform::errors::InvalidArgument(
                "Cannot register backward hook on a Tensor that stop "
                "gradient."));
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
      std::make_shared<PyTensorVoidHook>(hook_func));

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

570
PyMethodDef variable_methods[] = {
571
    {"numpy", (PyCFunction)(void (*)(void))tensor_method_numpy,
572 573
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
574
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
575
     METH_VARARGS | METH_KEYWORDS, NULL},
576
    {"_copy_to", (PyCFunction)(void (*)(void))tensor_method__copy_to,
577
     METH_VARARGS | METH_KEYWORDS, NULL},
578
    {"copy_", (PyCFunction)(void (*)(void))tensor_method_copy_,
579
     METH_VARARGS | METH_KEYWORDS, NULL},
580
    {"reconstruct_from_",
581
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
582
     METH_VARARGS | METH_KEYWORDS, NULL},
583
    {"retain_grads", (PyCFunction)(void (*)(void))tensor_retain_grads,
584
     METH_VARARGS | METH_KEYWORDS, NULL},
585
    {"clear_gradient", (PyCFunction)(void (*)(void))tensor_clear_gradient,
586
     METH_VARARGS | METH_KEYWORDS, NULL},
587
    {"_zero_grads", (PyCFunction)(void (*)(void))tensor__zero_grads,
588
     METH_VARARGS | METH_KEYWORDS, NULL},
589
    {"_share_buffer_to", (PyCFunction)(void (*)(void))tensor__share_buffer_to,
590
     METH_VARARGS | METH_KEYWORDS, NULL},
591
    {"_is_shared_buffer_with",
592
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
593
     METH_VARARGS | METH_KEYWORDS, NULL},
594
    {"_share_underline_tensor_to",
595
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
596 597
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_shared_underline_tensor_with",
598
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
599
     METH_VARARGS | METH_KEYWORDS, NULL},
600
    {"detach", (PyCFunction)(void (*)(void))tensor_method_detach,
601
     METH_VARARGS | METH_KEYWORDS, NULL},
602
    {"get_tensor",
603
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
604
     METH_VARARGS | METH_KEYWORDS, NULL},
605
    {"_set_value", (PyCFunction)(void (*)(void))tensor_method_set_value,
606
     METH_VARARGS | METH_KEYWORDS, NULL},
607 608 609 610 611 612 613 614
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_remove_grad_hook", (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
615 616 617 618
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle