test_prelu_op.py 2.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17 18
import unittest
import numpy as np
M
minqiyang 已提交
19
import six
20
from op_test import OpTest
Z
zchen0211 已提交
21 22


Z
zchen0211 已提交
23
class PReluTest(OpTest):
Z
zchen0211 已提交
24 25
    def setUp(self):
        self.op_type = "prelu"
J
jerrywgz 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39
        self.initTestCase()
        x_np = np.random.normal(size=(3, 5, 5, 10)).astype("float32")

        # Since zero point in prelu is not differentiable, avoid randomize
        # zero.
        x_np[np.abs(x_np) < 0.005] = 0.02

        if self.attrs == {'mode': "all"}:
            alpha_np = np.random.rand(1).astype("float32")
            self.inputs = {'X': x_np, 'Alpha': alpha_np}
        elif self.attrs == {'mode': "channel"}:
            alpha_np = np.random.rand(1, x_np.shape[1], 1, 1).astype("float32")
            self.inputs = {'X': x_np, 'Alpha': alpha_np}
        else:
40 41
            alpha_np = np.random.rand(1, x_np.shape[1], x_np.shape[2], \
                x_np.shape[3]).astype("float32")
J
jerrywgz 已提交
42 43
            self.inputs = {'X': x_np, 'Alpha': alpha_np}

Z
zchen0211 已提交
44
        out_np = np.maximum(self.inputs['X'], 0.)
Z
zchen0211 已提交
45 46
        out_np = out_np + np.minimum(self.inputs['X'],
                                     0.) * self.inputs['Alpha']
Z
zchen0211 已提交
47 48
        assert out_np is not self.inputs['X']
        self.outputs = {'Out': out_np}
Z
zchen0211 已提交
49

J
jerrywgz 已提交
50 51 52
    def initTestCase(self):
        self.attrs = {'mode': "channel"}

53
    def test_check_output(self):
Z
zchen0211 已提交
54 55
        self.check_output()

56
    def test_check_grad_1_ignore_x(self):
J
jerrywgz 已提交
57 58
        self.check_grad(['Alpha'], 'Out', no_grad_set=set('X'))

59 60
    def test_check_grad_2(self):
        self.check_grad(['X', 'Alpha'], 'Out')
J
jerrywgz 已提交
61

62 63
    def test_check_grad_3_ignore_alpha(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Alpha'))
J
jerrywgz 已提交
64 65


66
# TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues
M
minqiyang 已提交
67
if six.PY2:
J
jerrywgz 已提交
68

M
minqiyang 已提交
69 70 71 72 73 74 75 76 77 78 79
    class TestCase1(PReluTest):
        def initTestCase(self):
            self.attrs = {'mode': "all"}

    class TestCase2(PReluTest):
        def initTestCase(self):
            self.attrs = {'mode': "channel"}

    class TestCase3(PReluTest):
        def initTestCase(self):
            self.attrs = {'mode': "element"}
Z
zchen0211 已提交
80 81 82 83


if __name__ == "__main__":
    unittest.main()