prelu_op.cu 6.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/prelu.h"
#include "paddle/fluid/operators/prelu_op.h"
17
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
N
nhzlx 已提交
18 19 20 21 22 23 24
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

25 26 27 28 29 30 31 32 33 34 35
#define CUDA_NUM_THREADS 1024

// CUDA: grid stride looping
#define CUDA_KERNEL_LOOP(i, n)                                 \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

inline static int PADDLE_GET_BLOCKS(const int N) {
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}

N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename DeviceContext, typename T>
class CUDAPReluKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* alpha = context.Input<Tensor>("Alpha");
    auto* out = context.Output<Tensor>("Out");

    const T* x_ptr = x->data<T>();
    T* o_ptr = out->mutable_data<T>(context.GetPlace());

    const T* alpha_ptr = alpha->data<T>();
    auto& mode = context.Attr<std::string>("mode");

    int numel = x->numel();
    auto dim = x->dims();
52
    std::vector<int> input_shape = framework::vectorize<int>(dim);
N
nhzlx 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    if (mode == "channel") {
      math::PreluChannelWiseDirectCUDAFunctor<T> prelu_channel_wise;
      prelu_channel_wise(context.cuda_device_context().stream(), x_ptr,
                         alpha_ptr, o_ptr, input_shape);
    } else if (mode == "element") {
      math::PreluElementWiseDirectCUDAFunctor<T> prelu_element_wise;
      prelu_element_wise(context.cuda_device_context().stream(), x_ptr,
                         alpha_ptr, o_ptr, input_shape);
    } else {
      math::PreluScalarDirectCUDAFunctor<T> prelu_scalar;
      prelu_scalar(context.cuda_device_context().stream(), x_ptr, alpha_ptr,
                   o_ptr, input_shape);
    }
  }
};

70
enum PRELU_MODE { Element, Channel, Scalar };
71 72

template <typename T>
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
__global__ void PReluOpGradKernel(const T* x_ptr, const T* y_ptr,
                                  const T* alpha_ptr, const T* dy_ptr,
                                  T* dx_ptr, T* dalpha_ptr, size_t channel_num,
                                  size_t plane_size, size_t spatial_size,
                                  size_t numel, PRELU_MODE mode) {
  size_t index;
  CUDA_KERNEL_LOOP(index, numel) {
    T scale;
    if (mode == Element) {
      size_t element_index = index % spatial_size;
      scale = alpha_ptr[element_index];
    } else if (mode == Channel) {
      size_t temp = index / plane_size;
      size_t channel_index = temp % channel_num;
      scale = alpha_ptr[channel_index];
    } else {
      scale = alpha_ptr[0];
    }
    T x = x_ptr[index];
    T dy = dy_ptr[index];
    if (dx_ptr != nullptr) dx_ptr[index] = (x > 0) ? dy : scale * dy;
    if (dalpha_ptr != nullptr) dalpha_ptr[index] = (x > 0) ? 0 : x * dy;
95 96 97
  }
}

98 99
template <typename T>
class PreluOpGradFunctor {
100 101
 public:
  void operator()(cudaStream_t stream, const T* x, const T* y, const T* alpha,
102 103 104 105 106 107 108 109 110
                  const T* dy, T* dx, T* dalpha, std::vector<int> input_shape,
                  PRELU_MODE mode) {
    size_t plane_size = input_shape[2] * input_shape[3];
    size_t spatial_size = plane_size * input_shape[1];
    size_t numel = spatial_size * input_shape[0];
    PReluOpGradKernel<
        T><<<PADDLE_GET_BLOCKS(numel), CUDA_NUM_THREADS, 0, stream>>>(
        x, y, alpha, dy, dx, dalpha, input_shape[1], plane_size, spatial_size,
        numel, mode);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  }
};

template <typename T>
struct IdentityFunctor {
  HOSTDEVICE inline T operator()(const T& x) const { return x; }
};

template <typename DeviceContext, typename T>
class CUDAPReluGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Input<Tensor>("Out");
    auto* alpha = context.Input<Tensor>("Alpha");
    auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* dalpha = context.Output<Tensor>(framework::GradVarName("Alpha"));

    const T* x_ptr = x->data<T>();
    const T* y_ptr = y->data<T>();
    const T* alpha_ptr = alpha->data<T>();
    const T* dy_ptr = dy->data<T>();
    T* dx_ptr = dx ? dx->mutable_data<T>(context.GetPlace()) : nullptr;
    T* dalpha_ptr =
        dalpha ? dalpha->mutable_data<T>(context.GetPlace()) : nullptr;

    if (!dx && !dalpha) return;

    auto& mode = context.Attr<std::string>("mode");

    int numel = x->numel();
    auto dim = x->dims();
144
    std::vector<int> input_shape = framework::vectorize<int>(dim);
145 146 147 148
    auto stream = context.cuda_device_context().stream();

    T* dalpha_tmp_ptr;
    Tensor dalpha_tmp;
149
    if (dalpha_ptr == nullptr) {
150 151 152 153 154 155 156
      dalpha_tmp_ptr = dalpha_ptr;
    } else {
      auto& dev_ctx = context.template device_context<DeviceContext>();
      dalpha_tmp = context.AllocateTmpTensor<T, DeviceContext>(dim, dev_ctx);
      dalpha_tmp_ptr = dalpha_tmp.mutable_data<T>(context.GetPlace());
    }

157
    PRELU_MODE m;
158
    if (mode == "element") {
159
      m = Element;
160
    } else if (mode == "channel") {
161
      m = Channel;
162
    } else {
163
      m = Scalar;
164
    }
165 166 167
    PreluOpGradFunctor<T> prelu_grad;
    prelu_grad(stream, x_ptr, y_ptr, alpha_ptr, dy_ptr, dx_ptr, dalpha_tmp_ptr,
               input_shape, m);
168

169
    if (dalpha_tmp_ptr == nullptr) return;
170 171 172 173

    std::vector<int> reduce_dims;
    for (size_t i = 0; i < input_shape.size(); i++) {
      if (mode == "channel" && i == 1) continue;
174
      if (mode == "element" && i != 0) continue;
175 176 177 178 179 180 181 182 183
      reduce_dims.push_back(i);
    }

    TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
        dalpha_tmp, dalpha, reduce_dims, static_cast<T>(0), cub::Sum(),
        IdentityFunctor<T>(), stream);
  }
};

N
nhzlx 已提交
184 185 186 187 188 189 190
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    prelu, ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, double>);
191 192 193 194
REGISTER_OP_CUDA_KERNEL(
    prelu_grad,
    ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, double>);