trainer_config.resnet-lstm.py 4.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15
# edit-mode: -*- python -*-

16
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This configuration is a demonstration of how to implement the stacked LSTM
with residual connections, i.e. an LSTM layer takes the sum of the hidden states
and inputs of the previous LSTM layer instead of only the hidden states.
This architecture is from:
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean. 2016.
Google's Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. In arXiv https://arxiv.org/pdf/1609.08144v2.pdf
Different from the architecture described in the paper, we use a stack single
direction LSTM layers as the first layer instead of bi-directional LSTM. Also,
since this is a demo code, to reduce computation time, we stacked 4 layers
instead of 8 layers.
"""

from paddle.trainer_config_helpers import *

dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
    for i, line in enumerate(f):
        w = line.strip().split()[0]
        word_dict[w] = i

is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
Y
Yu Yang 已提交
61 62 63 64 65 66
define_py_data_sources2(
    train_list=trn,
    test_list=tst,
    module="dataprovider_emb",
    obj=process,
    args={"dictionary": word_dict})
67 68 69 70 71 72 73

batch_size = 128 if not is_predict else 1
settings(
    batch_size=batch_size,
    learning_rate=2e-3,
    learning_method=AdamOptimizer(),
    regularization=L2Regularization(8e-4),
Y
Yu Yang 已提交
74
    gradient_clipping_threshold=25)
75

Y
Yu Yang 已提交
76
bias_attr = ParamAttr(initial_std=0., l2_rate=0.)
77 78 79 80 81 82 83 84 85 86 87

data = data_layer(name="word", size=len(word_dict))
emb = embedding_layer(input=data, size=128)
lstm = simple_lstm(input=emb, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1))

previous_input, previous_hidden_state = emb, lstm

for i in range(3):
    # The input to the current layer is the sum of the hidden state
    # and input of the previous layer.
    current_input = addto_layer(input=[previous_input, previous_hidden_state])
Y
Yu Yang 已提交
88 89
    hidden_state = simple_lstm(
        input=current_input, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1))
90 91 92 93 94
    previous_input, previous_hidden_state = current_input, hidden_state

lstm = previous_hidden_state

lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling())
Y
Yu Yang 已提交
95 96
output = fc_layer(
    input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation())
97 98 99 100 101 102 103 104

if is_predict:
    maxid = maxid_layer(output)
    outputs([maxid, output])
else:
    label = data_layer(name="label", size=2)
    cls = classification_cost(input=output, label=label)
    outputs(cls)