yolov3_loss_op.cc 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
D
dengkaipeng 已提交
13
#include <memory>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
31 32
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
33 34 35 36 37
    PADDLE_ENFORCE(
        ctx->HasOutput("ObjectnessMask"),
        "Output(ObjectnessMask) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
                   "Output(GTMatchMask) of Yolov3LossOp should not be null.");
38 39

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
40 41
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
42
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
43
    int anchor_num = anchors.size() / 2;
44 45
    auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
    int mask_num = anchor_mask.size();
46
    auto class_num = ctx->Attrs().Get<int>("class_num");
47

D
dengkaipeng 已提交
48 49 50
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
51 52 53 54
    PADDLE_ENFORCE_EQ(
        dim_x[1], mask_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
D
dengkaipeng 已提交
55 56 57 58
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
D
dengkaipeng 已提交
59
                      "Input(GTLabel) should be a 2-D tensor");
D
dengkaipeng 已提交
60 61 62 63
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
64 65 66 67
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
68 69 70 71 72
    for (size_t i = 0; i < anchor_mask.size(); i++) {
      PADDLE_ENFORCE_LT(
          anchor_mask[i], anchor_num,
          "Attr(anchor_mask) should not crossover Attr(anchors).");
    }
73 74 75
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

76 77 78 79 80 81 82 83 84 85 86 87
    if (ctx->HasInput("GTScore")) {
      auto dim_gtscore = ctx->GetInputDim("GTScore");
      PADDLE_ENFORCE_EQ(dim_gtscore.size(), 2,
                        "Input(GTScore) should be a 2-D tensor");
      PADDLE_ENFORCE_EQ(
          dim_gtscore[0], dim_gtbox[0],
          "Input(GTBox) and Input(GTScore) dim[0] should be same");
      PADDLE_ENFORCE_EQ(
          dim_gtscore[1], dim_gtbox[1],
          "Input(GTBox) and Input(GTScore) dim[1] should be same");
    }

88
    std::vector<int64_t> dim_out({dim_x[0]});
D
dengkaipeng 已提交
89
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
90 91 92 93 94 95

    std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
    ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));

    std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
    ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
96 97 98 99 100
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
101 102
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
103 104 105 106 107 108 109
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
110
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
111 112 113
             "This is a 4-D tensor with shape of [N, C, H, W]."
             "H and W should be same, and the second dimention(C) stores"
             "box locations, confidence score and classification one-hot"
114
             "keys of each anchor box");
115 116 117 118
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
D
dengkaipeng 已提交
119 120 121 122 123 124 125
             "In the third dimention, stores x, y, w, h coordinates, "
             "x, y is the center cordinate of boxes and w, h is the "
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
126
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
127
             "box class id.");
128 129 130 131
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
132 133
             "augmentation.")
        .AsDispensable();
D
dengkaipeng 已提交
134 135
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
136
              "This is a 1-D tensor with shape of [N]");
137 138 139 140 141 142
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
143
              "This is an intermediate tensor with shape of [N, B], "
144 145 146
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
147 148

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
149 150
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
151 152 153 154 155 156
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
157
    AddAttr<int>("downsample_ratio",
158 159 160 161
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
162
    AddAttr<float>("ignore_thresh",
163 164
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
165 166
    AddAttr<bool>("use_label_smooth",
                  "Whether to use label smooth. Default True.")
167
        .SetDefault(true);
168
    AddComment(R"DOC(
169
         This operator generates yolov3 loss based on given predict result and ground
170
         truth boxes.
171 172
         
         The output of previous network is in shape [N, C, H, W], while H and W
173
         should be the same, H and W specify the grid size, each grid point predict 
T
tink2123 已提交
174 175
         given number bounding boxes, this given number, which following will be represented as S,
         is specified by the number of anchor clusters in each scale. In the second dimension(the channel
176 177 178 179
         dimension), C should be equal to S * (class_num + 5), class_num is the object 
         category number of source dataset(such as 80 in coco dataset), so in the 
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor box.
180

D
dengkaipeng 已提交
181 182
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
183 184

         $$
185 186 187 188 189 190
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
191
         b_w = p_w e^{t_w}
192 193
         $$
         $$
194 195 196
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
197
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
198
         and :math:`p_w, p_h` is specified by anchors.
199 200 201

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
D
dengkaipeng 已提交
202
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore 
203 204 205
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
T
tink2123 已提交
206
         confidence score loss, and classification loss. The L1 loss is used for 
207 208 209
         box coordinates (w, h), and sigmoid cross entropy loss is used for box 
         coordinates (x, y), confidence score loss and classification loss.

210 211 212 213 214
         Each groud truth box find a best matching anchor box in all anchors, 
         prediction of this anchor box will incur all three parts of losses, and
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

215 216
         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
217
         calculated as follows.
218 219 220 221

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
222

D
dengkaipeng 已提交
223
         Final loss will be represented as follows.
D
dengkaipeng 已提交
224 225

         $$
226 227
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
228
         $$
229 230 231

         While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
         target will be smoothed when calculating classification loss, target of 
D
dengkaipeng 已提交
232 233
         positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
         negetive samples will be smoothed to :math:`1.0 / class\_num`.
234 235

         While :attr:`GTScore` is given, which means the mixup score of ground truth 
236
         boxes, all losses incured by a ground truth box will be multiplied by its 
237
         mixup score.
238 239 240 241 242 243 244 245 246
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
247 248
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
249 250 251 252 253 254
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

255
 protected:
256 257
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
258 259
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
260 261 262
  }
};

263 264 265 266 267 268 269 270 271 272
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
D
dengkaipeng 已提交
273
    op->SetInput("GTLabel", Input("GTLabel"));
274
    op->SetInput("GTScore", Input("GTScore"));
275
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
276 277
    op->SetInput("ObjectnessMask", Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", Output("GTMatchMask"));
278 279 280 281 282

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
283
    op->SetOutput(framework::GradVarName("GTLabel"), {});
284
    op->SetOutput(framework::GradVarName("GTScore"), {});
285 286 287 288
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

289 290 291 292 293
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
294
                  ops::Yolov3LossGradMaker);
295
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
296 297 298 299
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);