io.py 73.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
23
from functools import reduce
24

H
hong 已提交
25 26
import numpy as np

27 28 29
import paddle
import paddle.reader
from paddle.reader import *
30
from paddle.fluid import layers
H
hong 已提交
31
from paddle.fluid.executor import Executor, global_scope
32
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
33 34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
35
from paddle.fluid.compiler import CompiledProgram
36
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
37
from . import reader
38
from . import unique_name
S
sneaxiy 已提交
39
from .reader import *
K
fix bug  
Kexin Zhao 已提交
40
from . import core
41
from .. import compat as cpt
42

43 44
batch = paddle.batch

45
__all__ = [
46 47 48 49 50 51 52 53 54 55 56 57 58
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
59 60
    'get_program_parameter',
    'get_program_persistable_vars',
61
] + reader.__all__ + paddle.reader.__all__
62

63 64
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
65

66 67

def is_parameter(var):
F
fengjiayi 已提交
68 69
    """
    Check whether the given variable is an instance of Parameter.
70 71

    Args:
F
fengjiayi 已提交
72
        var(Variable): The variable to be checked.
73 74

    Returns:
F
fengjiayi 已提交
75 76 77 78 79 80
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

81
            import paddle.fluid as fluid
F
fengjiayi 已提交
82 83
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
84
    """
85 86 87 88
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

102
            import paddle.fluid as fluid
103
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
104 105
            res = fluid.io.is_persistable(param)
    """
106
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
107 108
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
109
        return False
110 111 112
    return var.persistable


H
hong 已提交
113
def is_belong_to_optimizer(var):
114 115 116 117
    if not isinstance(var, Parameter):
        return is_persistable(var)

    return False
H
hong 已提交
118 119


H
hong 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


164 165
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
181 182


C
chengduo 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


197 198 199 200 201
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
202
              filename=None):
203
    """
204
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
205

206 207 208
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
209

210 211 212
    The `dirname` is used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the `dirname` floder,
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
213
    use `filename` to specify it.
214

F
fengjiayi 已提交
215 216
    Args:
        executor(Executor): The executor to run for saving variables.
217 218
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
219
        main_program(Program, optional): The program whose variables will be saved.
220
                                    If it is None, the default main program will
F
fengjiayi 已提交
221 222
                                    be used automatically.
                                    Default: None
223 224 225 226 227 228 229 230
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
231 232

    Returns:
233 234
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
235 236 237 238 239 240 241

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

242
            import paddle.fluid as fluid
243

244 245 246 247 248 249 250 251 252 253 254
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
255

256
            # The first usage: use `vars` to set the saved variables.
257 258
            var_list = [w, b]
            path = "./my_paddle_vars"
259
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
260 261 262 263 264 265 266 267 268 269
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
270
    """
271 272 273 274
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
275
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
276

277
    if vars is None:
278
        return save_vars(
279
            executor,
280
            main_program=main_program,
281
            dirname=dirname,
282
            vars=list(filter(predicate, main_program.list_vars())),
283
            filename=filename)
284
    else:
285
        params_var_name = unique_name.generate("saved_params")
286 287 288 289 290 291 292
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

293 294
        save_program = Program()
        save_block = save_program.global_block()
295 296

        save_var_map = {}
297
        for each_var in vars:
298 299 300
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
301
            new_var = _clone_var_in_block_(save_block, each_var)
302 303 304
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
305 306 307 308
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
309
                    attrs={'file_path': os.path.normpath(save_file_path)})
310 311 312
            else:
                save_var_map[new_var.name] = new_var

313
        if filename is not None or save_to_memory:
314 315 316 317
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

318 319 320 321 322 323 324
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
325
            save_block.append_op(
326 327
                type='save_combine',
                inputs={'X': save_var_list},
328 329 330 331 332
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
333

334 335 336 337
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
338
        executor.run(save_program)
339 340
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
341 342


343
def save_params(executor, dirname, main_program=None, filename=None):
344
    """
G
guofei 已提交
345 346 347
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
348

G
guofei 已提交
349 350 351
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
352 353
    the file name.

G
guofei 已提交
354 355 356 357 358 359 360 361 362 363
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
364 365

    Args:
G
guofei 已提交
366 367
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
368 369
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
370 371 372 373 374 375 376 377 378 379
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
380 381

    Returns:
382 383
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
384 385 386 387

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
388
            import paddle.fluid as fluid
G
guofei 已提交
389 390 391 392 393 394 395 396 397 398
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
399
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
400 401 402 403
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
404
    """
405
    return save_vars(
406 407
        executor,
        dirname=dirname,
408
        main_program=main_program,
409
        vars=None,
410
        predicate=is_parameter,
411
        filename=filename)
412 413


414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

436
            import paddle.fluid as fluid
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
458 459 460 461 462 463 464
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
465 466 467

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
468
                slice = optimizer.slice
469 470 471
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
472 473 474
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
475 476
                endpoints[index] = endpoint

T
tangwei12 已提交
477 478 479 480 481
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

482
            block.append_op(
T
tangwei12 已提交
483 484 485 486 487 488 489 490 491 492 493
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
523 524
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
525 526 527 528 529 530
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
531
        raise TypeError("'main_program' should be an instance of Program.")
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


565
def save_persistables(executor, dirname, main_program=None, filename=None):
566
    """
G
guofei 已提交
567 568 569 570 571
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
572

G
guofei 已提交
573
    The :code:`dirname` is used to specify the folder where persistable variables
574
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
575 576
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
577 578 579

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
580 581
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
582 583
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
584 585 586 587 588 589 590 591 592
        main_program(Program, optional): The program whose persistbale variables will
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
593 594

    Returns:
595 596
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
597 598 599 600

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
601
            import paddle.fluid as fluid
G
guofei 已提交
602 603 604 605 606 607 608 609 610 611
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
612
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
613 614 615 616 617
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
618
    """
619
    if main_program and main_program._is_distributed:
620
        return _save_distributed_persistables(
621 622
            executor, dirname=dirname, main_program=main_program)
    else:
623
        return save_vars(
624 625 626 627 628 629
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
630 631


632 633 634 635 636
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
637
              filename=None):
638
    """
639
    This API loads variables from files by executor.
F
fengjiayi 已提交
640

641 642 643 644
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
645

646
    The `dirname` is used to specify the folder where to load variables.
647
    If variables were saved in separate files in the folder `dirname`,
648
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
649
    use `filename` to specify it.
650

F
fengjiayi 已提交
651 652
    Args:
        executor(Executor): The executor to run for loading variables.
653 654
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
655
                                    If it is None, the default main program will
F
fengjiayi 已提交
656 657
                                    be used automatically.
                                    Default: None
658
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
659
                                   Default: None
660 661 662 663 664 665
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
666 667 668 669 670 671 672 673 674 675

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

676
            import paddle.fluid as fluid
677

678 679 680 681 682 683 684 685 686 687 688
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
689

690 691 692 693 694 695 696 697 698 699 700
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
701
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
702 703 704
            def name_has_fc(var):
                res = "fc" in var.name
                return res
705 706 707
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
708
                               vars=None, predicate=name_has_fc)
709 710
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
711

712
    """
713 714 715 716 717
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
718

719
    if vars is None:
720
        if main_program is None:
Y
Yu Yang 已提交
721
            main_program = default_main_program()
722
        if not isinstance(main_program, Program):
723 724 725 726
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
727
            dirname=dirname,
T
tangwei12 已提交
728
            main_program=main_program,
729
            vars=list(filter(predicate, main_program.list_vars())),
730
            filename=filename)
731 732 733
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
734

735 736
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
737

738 739 740
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

T
tangwei12 已提交
741
        # save origin param shape
H
hong 已提交
742
        orig_para_shape = {}
743
        load_var_map = {}
744 745
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
746 747
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
748 749

            if isinstance(each_var, Parameter):
750 751
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
752
            new_var = _clone_var_in_block_(load_block, each_var)
753
            if filename is None:
754 755 756 757
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
758 759 760 761
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
762
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
763 764 765
            else:
                load_var_map[new_var.name] = new_var

766
        if filename is not None:
767 768 769 770
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

771 772 773
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

774
            load_block.append_op(
775
                type='load_combine',
776
                inputs={},
777
                outputs={"Out": load_var_list},
778 779 780 781
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
782 783
        executor.run(load_prog)

T
tangwei12 已提交
784
        # check var shape
H
hong 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

799

800
def load_params(executor, dirname, main_program=None, filename=None):
801
    """
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
821 822

    Args:
823 824
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
825
        dirname(str): The directory path.
826 827 828 829 830 831 832 833
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
834 835 836 837 838 839 840

    Returns:
        None

    Examples:
        .. code-block:: python

841
            import paddle.fluid as fluid
842

F
fengjiayi 已提交
843 844 845
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
846
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
847
                                main_program=None)
848 849
    """
    load_vars(
850 851 852
        executor,
        dirname=dirname,
        main_program=main_program,
853
        predicate=is_parameter,
854
        filename=filename)
855 856


857
def load_persistables(executor, dirname, main_program=None, filename=None):
858
    """
859 860 861
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
    directory ``dirnameme`` or the file ``filename``.
F
fengjiayi 已提交
862

863 864 865 866
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
867 868

    Args:
869 870
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
871
        dirname(str): The directory path.
872 873 874 875 876 877 878 879
        main_program(Program, optional): The program whose persistbale variables will
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
880 881 882 883 884 885 886

    Returns:
        None

    Examples:
        .. code-block:: python

887
            import paddle.fluid as fluid
888

F
fengjiayi 已提交
889 890 891
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
892
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
893
                                       main_program=None)
894
    """
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

926
            import paddle.fluid as fluid
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
960 961 962 963 964 965 966 967
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
990
        raise TypeError("'main_program' should be an instance of Program.")
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1005 1006


1007 1008 1009
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1010 1011 1012
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1013 1014
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1015 1016 1017
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1018

1019
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
1020
        out = global_block.var(name)
W
Wu Yi 已提交
1021
        global_block._prepend_op(
K
Kexin Zhao 已提交
1022 1023
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1024
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1025 1026 1027
            attrs={'col': i})


1028 1029 1030
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1031 1032
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1033 1034 1035
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1036

1037
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1038 1039 1040 1041 1042 1043 1044
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1045 1046 1047 1048
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1049
                         main_program=None,
1050
                         model_filename=None,
1051
                         params_filename=None,
T
tangwei12 已提交
1052 1053
                         export_for_deployment=True,
                         program_only=False):
1054
    """
F
fengjiayi 已提交
1055
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1056
    and then save it and all related parameters to given `dirname` .
1057
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1058 1059
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1060

G
guofei 已提交
1061 1062 1063 1064 1065
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1066 1067 1068

    Args:
        dirname(str): The directory path to save the inference model.
G
guofei 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        feeded_var_names(list[str]): list of string. Names of variables that need to be feeded
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
                                         build the inference model. If is setted None,
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
                                       itself. If is setted None, a default filename
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
                                        If it is setted None, parameters will be saved
                                        in separate files .
X
Xin Pan 已提交
1085 1086 1087 1088 1089
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1090 1091 1092 1093
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1094

F
fengjiayi 已提交
1095
    Returns:
G
guofei 已提交
1096 1097 1098 1099
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1100 1101

    Raises:
G
guofei 已提交
1102 1103
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1104 1105 1106

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1107

1108 1109
            import paddle.fluid as fluid

F
fengjiayi 已提交
1110 1111
            path = "./infer_model"

1112
            # User defined network, here a softmax regresssion example
G
guofei 已提交
1113 1114
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1132 1133 1134
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1135
            # and parameters are going to be saved in separate files under folder
1136
            # "./infer_model".
1137 1138

    """
M
minqiyang 已提交
1139
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1140
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1141
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1142
        if len(feeded_var_names) > 0:
1143
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1144
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1145
                    isinstance(name, six.string_types)
1146
                    for name in feeded_var_names)):
M
minqiyang 已提交
1147
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1148 1149

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1150
        target_vars = [target_vars]
X
Xin Pan 已提交
1151
    elif export_for_deployment:
1152 1153
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1154 1155
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1156
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

F
flame 已提交
1167
    target_var_name_list = [var.name for var in target_vars]
1168

1169
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1170
    save_dirname = dirname
1171
    try:
L
lujun 已提交
1172 1173
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1174 1175 1176 1177
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1178 1179 1180 1181
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1182
    model_basename = os.path.join(save_dirname, model_basename)
1183

X
Xin Pan 已提交
1184 1185 1186 1187
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1188 1189 1190

    origin_program = main_program.clone()

X
Xin Pan 已提交
1191
    if export_for_deployment:
X
Xin Pan 已提交
1192 1193
        main_program = main_program.clone()
        global_block = main_program.global_block()
1194
        need_to_remove_op_index = []
X
Xin Pan 已提交
1195 1196 1197
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1198 1199 1200 1201 1202
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1203
        main_program.desc.flush()
X
Xin Pan 已提交
1204

1205 1206
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1207
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1208 1209
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1210 1211 1212
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1213 1214
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1215 1216
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1217 1218 1219
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1220 1221
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1222

T
tangwei12 已提交
1223 1224 1225 1226 1227 1228
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1229 1230
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1231 1232
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1233

L
lujun 已提交
1234
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1235
    return target_var_name_list
X
fix  
Xin Pan 已提交
1236

1237

1238 1239 1240
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1241 1242
                         params_filename=None,
                         pserver_endpoints=None):
1243
    """
1244 1245 1246
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1247
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1248

F
fengjiayi 已提交
1249
    Args:
1250 1251 1252
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1253
        executor(Executor): The executor to run for loading inference model.
1254
                            See :ref:`api_guide_executor_en` for more details about it.
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1266 1267 1268 1269

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1270
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1271 1272

    Returns:
1273
        list: The return of this API is a list with three elements:
1274
        (program, feed_target_names, fetch_targets). The `program` is a
1275 1276 1277 1278 1279
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1280 1281 1282 1283 1284 1285 1286

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1287 1288
            import paddle.fluid as fluid
            import numpy as np
1289 1290

            # Build the model
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1302 1303

            # Save the inference model
F
fengjiayi 已提交
1304
            path = "./infer_model"
1305 1306
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1307 1308 1309

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1310 1311
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1312
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1313 1314 1315 1316
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1317 1318 1319
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1320
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1321
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1322 1323
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1324
                                              pserver_endpoints=endpoints))
1325

1326
            # In this example, the inference program was saved in the file
1327
            # "./infer_model/__model__" and parameters were saved in
1328 1329 1330 1331
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1332
    """
1333 1334 1335 1336 1337
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
            raise ValueError("There is no directory named '%s'", dirname)
1338

1339 1340
        if model_filename is None:
            model_filename = '__model__'
1341

1342 1343
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1359

1360
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1361
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1362 1363 1364
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1365
    load_persistables(executor, load_dirname, program, params_filename)
1366

T
tangwei12 已提交
1367
    if pserver_endpoints:
T
tangwei12 已提交
1368
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1369

1370 1371
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1372 1373 1374 1375 1376
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1377 1378


T
tangwei12 已提交
1379 1380 1381
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1382 1383
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1384
    program._sync_with_cpp()
T
tangwei12 已提交
1385
    return program
T
tangwei12 已提交
1386 1387


X
xuwei06 已提交
1388 1389
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1401

F
fengjiayi 已提交
1402 1403
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1404

1405
            import paddle.fluid as fluid
F
fengjiayi 已提交
1406 1407 1408
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1409

X
xuwei06 已提交
1410
    """
X
xuwei06 已提交
1411 1412
    assert is_parameter(para)

X
xuwei06 已提交
1413 1414 1415 1416 1417 1418 1419 1420
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1421
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1422

F
fengjiayi 已提交
1423 1424 1425 1426 1427 1428 1429
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1430

F
fengjiayi 已提交
1431 1432
    Returns:
        numpy.array: The parameter's values.
1433

F
fengjiayi 已提交
1434 1435 1436 1437 1438
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1439

F
fengjiayi 已提交
1440 1441 1442
    Examples:
        .. code-block:: python

1443
            import paddle.fluid as fluid
F
fengjiayi 已提交
1444 1445
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1446 1447
    """
    if program is None:
Y
Yu Yang 已提交
1448
        program = default_main_program()
X
xuwei06 已提交
1449 1450
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
T
tangwei12 已提交
1557
        "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"
H
hong 已提交
1558

1559 1560 1561 1562
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1563 1564 1565 1566
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1567
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1568 1569 1570
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
        pickle.dump(param_dict, f)
H
hong 已提交
1571 1572 1573 1574

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1575 1576 1577
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
        pickle.dump(opt_dict, f)
H
hong 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


H
hong 已提交
1588
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1589
    """
H
hong 已提交
1590
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1591
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1592

H
hong 已提交
1593 1594 1595 1596
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1597
    Args: 
1598 1599 1600 1601
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1602 1603 1604
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1621 1622
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
                        "loaded var [{}] not included in program variable list")

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1716 1717

    parameter_list = list(filter(is_parameter, program.list_vars()))
1718 1719 1720 1721 1722

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1723 1724 1725 1726 1727 1728 1729
    with open(parameter_file_name, 'rb') as f:
        load_dict = pickle.load(f)
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1730 1731 1732 1733 1734

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1735
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1736
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1737
            "Optimizer file [{}] not exits".format(opt_file_name)
1738 1739 1740 1741

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1742 1743 1744 1745 1746 1747 1748 1749

        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779


def load_program_state(model_path):
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1780
        "Parameter file [{}] not exits".format(parameter_file_name)
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

    with open(parameter_file_name, 'rb') as f:
        para_dict = pickle.load(f)

    opt_file_name = model_path + ".pdopt"
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
            opti_dict = pickle.load(f)

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1825 1826
            fluid.set_program_state( prog, program_state)

1827 1828 1829 1830 1831 1832 1833
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1834
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1835 1836 1837 1838
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1839 1840 1841
            assert orig_para_np.shape == new_para_np.shape, \
                "Shape not matching: the Program requires a parameter with a shape of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1842
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1843 1844 1845
            assert orig_para_np.dtype == new_para_np.dtype, \
                "Dtype not matching: the Program requires a parameter with a dtype of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1846 1847 1848 1849 1850 1851
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1852
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))