jit_code.h 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
tensor-tang 已提交
17
#include <string>
18
#include "paddle/fluid/operators/math/jit_gen.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/jit_kernel_impl.h"
T
tensor-tang 已提交
20 21
#include "paddle/fluid/platform/cpu_info.h"

22 23 24 25 26 27 28 29 30 31 32 33 34
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;

35 36 37 38 39 40 41 42 43 44
typedef enum {
  mul = 0,
  add,
  sub,
  relu,
  exp,
  sigmoid,
  tanh,
  identity
} operand_type;
45

T
tensor-tang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
extern const float exp_float_consts[];
extern const int exp_int_0x7f[];
extern int g_tmp_mem[];

#define EXP_HIG 88.3762626647949f
#define EXP_LOW -88.3762626647949f
#define CEPHES_LOG2EF 1.44269504088896341
#define CEPHES_EXP_C1 0.693359375
#define CEPHES_EXP_C2 -2.12194440e-4
#define CEPHES_EXP_P0 1.9875691500E-4
#define CEPHES_EXP_P1 1.3981999507E-3
#define CEPHES_EXP_P2 8.3334519073E-3
#define CEPHES_EXP_P3 4.1665795894E-2
#define CEPHES_EXP_P4 1.6666665459E-1
#define CEPHES_EXP_P5 5.0000001201E-1

#define REPEAT_8TIMES(val) val, val, val, val, val, val, val, val

#define OFFSET_EXP_ONE 0 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_TWO 1 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_0P5 2 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_HIG 3 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOW 4 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOG2EF 5 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C1 6 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C2 7 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P0 8 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P1 9 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P2 10 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P3 11 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P4 12 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P5 13 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_MAX_INPUT 14 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MAX 15 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MIN 16 * YMM_FLOAT_BLOCK * sizeof(float)

T
tensor-tang 已提交
82
// function: vec = Operand(vec(or scalar), vec(or scalar)) (maybe with relu)
T
tensor-tang 已提交
83
class VXXJitCode : public JitCode {
T
tensor-tang 已提交
84
 public:
T
tensor-tang 已提交
85
  const char* name() const override {
T
tensor-tang 已提交
86
    std::string base = "VXXJitCode";
T
tensor-tang 已提交
87 88 89 90 91
    if (scalar_index_ == 1) {
      base += "_Scalar";
    } else {
      base += "_Vec";
    }
T
tensor-tang 已提交
92 93 94 95 96
    if (type_ == operand_type::mul) {
      base += "_Mul";
    } else if (type_ == operand_type::add) {
      base += "_Add";
    }
T
tensor-tang 已提交
97 98 99 100 101
    if (scalar_index_ == 2) {
      base += "_Scalar";
    } else {
      base += "_Vec";
    }
T
tensor-tang 已提交
102
    base += (with_relu_ ? "_Relu" : "");
T
tensor-tang 已提交
103 104
    return base.c_str();
  }
T
tensor-tang 已提交
105 106 107
  explicit VXXJitCode(int d, operand_type type, int scalar_index,
                      bool with_relu, size_t code_size = 256 * 1024,
                      void* code_ptr = nullptr)
T
tensor-tang 已提交
108 109 110
      : JitCode(code_size, code_ptr),
        num_(d),
        type_(type),
T
tensor-tang 已提交
111
        scalar_index_(scalar_index),
T
tensor-tang 已提交
112
        with_relu_(with_relu) {}
T
tensor-tang 已提交
113
  static bool init(int d, int scalar_index = 0);
T
tensor-tang 已提交
114 115 116 117
  void generate() override;

 private:
  int num_;
T
tensor-tang 已提交
118
  operand_type type_;
T
tensor-tang 已提交
119
  int scalar_index_;
T
tensor-tang 已提交
120
  bool with_relu_;
T
tensor-tang 已提交
121 122 123 124 125 126
  reg64_t param1{abi_param1};
  reg64_t param2{abi_param2};
  reg64_t param3{abi_param3};

  xmm_t xmm_src1 = xmm_t(0);
  xmm_t xmm_src2 = xmm_t(1);
T
tensor-tang 已提交
127 128
  xmm_t xmm_dst = xmm_t(2);
  xmm_t xmm_zero = xmm_t(3);
T
tensor-tang 已提交
129 130 131

  ymm_t ymm_src1 = ymm_t(0);
  ymm_t ymm_src2 = ymm_t(1);
T
tensor-tang 已提交
132 133
  ymm_t ymm_dst = ymm_t(2);
  ymm_t ymm_zero = ymm_t(3);
T
tensor-tang 已提交
134 135
};

136
class VActJitCode : public JitCode {
T
tensor-tang 已提交
137
 public:
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  const char* name() const override {
    std::string base = "VActJitCode";
    switch (type_) {
      case operand_type::relu:
        base += "_Relu";
        break;
      case operand_type::exp:
        base += "_Exp";
        break;
      case operand_type::sigmoid:
        base += "_Sigmoid";
        break;
      case operand_type::tanh:
        base += "_Tanh";
        break;
      case operand_type::identity:
        base += "_Identity";
        break;
      default:
        break;
    }
    return base.c_str();
  }
T
tensor-tang 已提交
161

162
  explicit VActJitCode(int d, operand_type type, size_t code_size = 256 * 1024,
T
tensor-tang 已提交
163
                       void* code_ptr = nullptr)
164 165
      : JitCode(code_size, code_ptr), num_(d), type_(type) {}
  static bool init(int d, operand_type type);
T
tensor-tang 已提交
166 167
  void generate() override;

T
tensor-tang 已提交
168
 protected:
T
tensor-tang 已提交
169
  // compute relu with ymm, xmm
T
tensor-tang 已提交
170
  template <typename JMM>
171 172 173
  void relu_jmm(JMM& dst, JMM& src, int zero_idx = 15) {  // NOLINT
    JMM zero = JMM(zero_idx);
    vxorps(zero, zero, zero);
T
tensor-tang 已提交
174 175
    vmaxps(dst, src, zero);
  }
T
tensor-tang 已提交
176

T
tensor-tang 已提交
177
  // compute exp with ymm, xmm
T
tensor-tang 已提交
178
  template <typename JMM>
179 180
  void exp_jmm(JMM& dst, JMM& src, int src_idx = 11, int fx_idx = 12,  // NOLINT
               int fy_idx = 13, int mask_idx = 14, int tmp_idx = 15) {
T
tensor-tang 已提交
181
    using namespace platform;  // NOLINT
T
tensor-tang 已提交
182
    // check all idx can not equal
183
    JMM jmm_src = JMM(src_idx);
T
tensor-tang 已提交
184 185 186 187 188 189
    JMM jmm_fx = JMM(fx_idx);
    JMM jmm_fy = JMM(fy_idx);
    JMM jmm_mask = JMM(mask_idx);
    JMM jmm_tmp = JMM(tmp_idx);
    reg64_t reg_ptr_global = rax;
    push(reg_ptr_global);
190
    vmovaps(jmm_src, src);
T
tensor-tang 已提交
191 192
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
193
    vminps(jmm_src, jmm_src, jmm_tmp);
T
tensor-tang 已提交
194
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
195
    vmaxps(jmm_src, jmm_src, jmm_tmp);
T
tensor-tang 已提交
196 197
    // express exp(x) as exp(g + n*log(2))
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
198
    vmulps(jmm_fx, jmm_src, jmm_tmp);
T
tensor-tang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
    vaddps(jmm_fx, jmm_fx, jmm_tmp);
    vroundps(jmm_fy, jmm_fx, 0x01);
    // if greater, substract 1
    vcmpgtps(jmm_mask, jmm_fy, jmm_fx);
    vmovaps(jmm_tmp, ptr[reg_ptr_global]);
    vandps(jmm_mask, jmm_mask, jmm_tmp);
    vsubps(jmm_fx, jmm_fy, jmm_mask);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
    vmulps(jmm_fy, jmm_fx, jmm_tmp);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
    JMM ymm_z = JMM(jmm_mask.getIdx());
    vmulps(ymm_z, jmm_fx, jmm_tmp);
212 213 214
    vsubps(jmm_src, jmm_src, jmm_fy);
    vsubps(jmm_src, jmm_src, ymm_z);
    vmulps(ymm_z, jmm_src, jmm_src);
T
tensor-tang 已提交
215
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
216
    vmulps(dst, jmm_src, jmm_tmp);
T
tensor-tang 已提交
217 218 219 220
    for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
         i += (YMM_FLOAT_BLOCK * sizeof(float))) {
      vmovaps(jmm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
      vaddps(dst, dst, jmm_tmp);
221
      vmulps(dst, dst, jmm_src);
T
tensor-tang 已提交
222 223 224 225
    }
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
    vaddps(dst, dst, jmm_tmp);
    vmulps(dst, dst, ymm_z);
226
    vaddps(dst, dst, jmm_src);
T
tensor-tang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    vmovaps(jmm_tmp, ptr[reg_ptr_global]);
    vaddps(dst, dst, jmm_tmp);
    // build 2^n
    JMM ymm_int = jmm_fx;
    vcvttps2dq(ymm_int, jmm_fx);
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
    vmovdqa(jmm_tmp, ptr[reg_ptr_global]);
    if (MayIUse(avx2) || std::is_same<JMM, xmm_t>::value) {
      vpaddd(ymm_int, ymm_int, jmm_tmp);
      vpslld(ymm_int, ymm_int, 23);
    } else if (MayIUse(avx)) {
      xmm_t xtmp1 = xmm_t(ymm_int.getIdx());
      xmm_t xtmp2 = xmm_t(jmm_tmp.getIdx());
      reg64_t reg_ptr_tmp = reg_ptr_global;
      mov(reg_ptr_tmp, reinterpret_cast<size_t>(g_tmp_mem));
      vmovdqa(ptr[reg_ptr_tmp], ymm_int);
      vmovdqa(ptr[reg_ptr_tmp + YMM_FLOAT_BLOCK * sizeof(float)], jmm_tmp);
      vpaddd(xtmp1, xtmp1, xtmp2);
      vpslld(xtmp1, xtmp1, 23);
      vmovdqa(ptr[reg_ptr_tmp], xtmp1);
      // next 128bits
      vmovdqa(xtmp1, ptr[reg_ptr_tmp + XMM_FLOAT_BLOCK * sizeof(float)]);
      vmovdqa(xtmp2, ptr[reg_ptr_tmp +
                         (YMM_FLOAT_BLOCK + XMM_FLOAT_BLOCK) * sizeof(float)]);
      vpaddd(xtmp1, xtmp1, xtmp2);
      vpslld(xtmp1, xtmp1, 23);
      vmovdqa(ptr[reg_ptr_tmp + XMM_FLOAT_BLOCK * sizeof(float)], xtmp1);
      // load out
      vmovdqa(ymm_int, ptr[reg_ptr_tmp]);
    }
    vmulps(dst, dst, ymm_int);
    pop(reg_ptr_global);
  }
T
tensor-tang 已提交
260

T
tensor-tang 已提交
261 262
  // compute sigmoid with ymm, xmm
  template <typename JMM>
263 264 265
  void sigmoid_jmm(JMM& dst, JMM& src, int src_idx = 11,  // NOLINT
                   int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
                   int tmp_idx = 15) {
T
tensor-tang 已提交
266 267
    // y = 1 / (1 + e^-x)
    JMM jmm_tmp = JMM(tmp_idx);
268
    JMM jmm_src = JMM(src_idx);
T
tensor-tang 已提交
269 270
    reg64_t reg_ptr_global = rax;
    push(reg_ptr_global);
271
    vmovaps(jmm_src, src);
T
tensor-tang 已提交
272 273
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MAX]);
274
    vminps(jmm_src, jmm_src, jmm_tmp);
T
tensor-tang 已提交
275
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MIN]);
276
    vmaxps(jmm_src, jmm_src, jmm_tmp);
T
tensor-tang 已提交
277
    vxorps(jmm_tmp, jmm_tmp, jmm_tmp);
278 279
    vsubps(jmm_src, jmm_tmp, jmm_src);
    exp_jmm<JMM>(dst, jmm_src, src_idx, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
280 281 282 283 284
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
    vaddps(dst, dst, jmm_tmp);
    vdivps(dst, jmm_tmp, dst);
    pop(reg_ptr_global);
  }
T
tensor-tang 已提交
285

T
tensor-tang 已提交
286 287
  // compute tanh with ymm, xmm
  template <typename JMM>
288 289 290
  void tanh_jmm(JMM& dst, JMM& src, int src_idx = 11,  // NOLINT
                int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
                int tmp_idx = 15) {
T
tensor-tang 已提交
291
    // y = 2 / (1 + e^(-2x)) - 1
292
    JMM jmm_src = JMM(src_idx);
T
tensor-tang 已提交
293 294 295 296
    JMM jmm_tmp = JMM(tmp_idx);
    JMM jmm_zero = JMM(mask_idx);
    reg64_t reg_ptr_global = rax;
    push(reg_ptr_global);
297
    vmovaps(jmm_src, src);
T
tensor-tang 已提交
298 299 300 301
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
    vxorps(jmm_zero, jmm_zero, jmm_zero);
    vsubps(jmm_tmp, jmm_zero, jmm_tmp);
302 303
    vmulps(jmm_src, jmm_src, jmm_tmp);
    exp_jmm<JMM>(dst, jmm_src, src_idx, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
304 305 306 307 308 309 310 311
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
    vaddps(dst, dst, jmm_tmp);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
    vdivps(dst, jmm_tmp, dst);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
    vsubps(dst, dst, jmm_tmp);
    pop(reg_ptr_global);
  }
T
tensor-tang 已提交
312

313 314
  template <typename JMM>
  void act(JMM& dst, JMM& src, operand_type type) {  // NOLINT
315
    // use 11~15
316 317
    switch (type) {
      case operand_type::relu:
318
        relu_jmm<JMM>(dst, src, 15);
319 320
        break;
      case operand_type::exp:
321
        exp_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
322 323
        break;
      case operand_type::sigmoid:
324
        sigmoid_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
325 326
        break;
      case operand_type::tanh:
327
        tanh_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
328 329 330 331 332 333 334 335 336
        break;
      case operand_type::identity:
        break;
      default:
        // throw error
        break;
    }
  }

337
 protected:
T
tensor-tang 已提交
338
  int num_;
339
  operand_type type_;
T
tensor-tang 已提交
340 341
  reg64_t param1{abi_param1};
  reg64_t param2{abi_param2};
342 343

  xmm_t xmm_src = xmm_t(0);
T
tensor-tang 已提交
344
  ymm_t ymm_src = ymm_t(0);
345 346

  xmm_t xmm_dst = xmm_t(1);
T
tensor-tang 已提交
347 348 349
  ymm_t ymm_dst = ymm_t(1);
};

T
tensor-tang 已提交
350 351 352 353
class LSTMJitCode : public VActJitCode {
 public:
  const char* name() const override {
    std::string base = "LSTMJitCode";
354 355 356 357 358 359
    if (use_peephole_) {
      base += "_Peephole";
    }
    if (compute_c1h1_) {
      base += "_C1H1";
    }
T
tensor-tang 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    auto AddTypeStr = [&](operand_type type) {
      switch (type) {
        case operand_type::relu:
          base += "_Relu";
          break;
        case operand_type::exp:
          base += "_Exp";
          break;
        case operand_type::sigmoid:
          base += "_Sigmoid";
          break;
        case operand_type::tanh:
          base += "_Tanh";
          break;
        case operand_type::identity:
          base += "_Identity";
          break;
        default:
          break;
      }
    };
    AddTypeStr(act_gate_);
    AddTypeStr(act_cand_);
    AddTypeStr(act_cell_);
    return base.c_str();
  }

387
  explicit LSTMJitCode(bool compute_c1h1, const lstm_attr_t& attr,
T
tensor-tang 已提交
388
                       size_t code_size = 256 * 1024, void* code_ptr = nullptr)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
      : VActJitCode(attr.d, operand_type::sigmoid /* this is bugy*/, code_size,
                    code_ptr),
        compute_c1h1_(compute_c1h1) {
    auto typeExchange = [](const std::string& type) -> gen::operand_type {
      if (type == "sigmoid") {
        return operand_type::sigmoid;
      } else if (type == "relu") {
        return operand_type::relu;
      } else if (type == "tanh") {
        return operand_type::tanh;
      } else if (type == "identity" || type == "") {
        return operand_type::identity;
      }  // else throw error
      return operand_type::identity;
    };
    num_ = attr.d;
    use_peephole_ = attr.use_peephole;
    act_gate_ = typeExchange(attr.act_gate);
    act_cand_ = typeExchange(attr.act_cand);
    act_cell_ = typeExchange(attr.act_cell);
  }
T
tensor-tang 已提交
410 411 412 413 414
  static bool init(int d);
  void generate() override;

 protected:
  int num_;
415 416
  bool compute_c1h1_;
  bool use_peephole_;
T
tensor-tang 已提交
417 418 419 420
  operand_type act_gate_;
  operand_type act_cand_;
  operand_type act_cell_;
  reg64_t param1{abi_param1};
421
};
T
tensor-tang 已提交
422

423 424 425 426 427 428 429 430 431 432
class GRUJitCode : public VActJitCode {
 public:
  const char* name() const override {
    std::string base = "GRUJitCode";
    if (id_ == 0) {
      base += "_H1";
    } else if (id_ == 1) {
      base += "_HtPart1";
    } else if (id_ == 2) {
      base += "_HtPart2";
T
tensor-tang 已提交
433
    }
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    auto AddTypeStr = [&](operand_type type) {
      switch (type) {
        case operand_type::relu:
          base += "_Relu";
          break;
        case operand_type::exp:
          base += "_Exp";
          break;
        case operand_type::sigmoid:
          base += "_Sigmoid";
          break;
        case operand_type::tanh:
          base += "_Tanh";
          break;
        case operand_type::identity:
          base += "_Identity";
          break;
        default:
          break;
      }
    };
    AddTypeStr(act_gate_);
    AddTypeStr(act_cand_);
    return base.c_str();
T
tensor-tang 已提交
458
  }
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

  explicit GRUJitCode(int id, const gru_attr_t& attr,
                      size_t code_size = 256 * 1024, void* code_ptr = nullptr)
      : VActJitCode(attr.d, operand_type::sigmoid /* this is bugy*/, code_size,
                    code_ptr),
        id_(id) {
    auto typeExchange = [](const std::string& type) -> gen::operand_type {
      if (type == "sigmoid") {
        return operand_type::sigmoid;
      } else if (type == "relu") {
        return operand_type::relu;
      } else if (type == "tanh") {
        return operand_type::tanh;
      } else if (type == "identity" || type == "") {
        return operand_type::identity;
      }  // else throw error
      return operand_type::identity;
    };
    num_ = attr.d;
    act_gate_ = typeExchange(attr.act_gate);
    act_cand_ = typeExchange(attr.act_cand);
  }
  static bool init(int d);
  void generate() override;

 protected:
  int id_;
  int num_;
  operand_type act_gate_;
  operand_type act_cand_;
  reg64_t param1{abi_param1};
T
tensor-tang 已提交
490 491
};

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
#ifdef PADDLE_WITH_MKLDNN
struct EltwiseMulnChw16cNC : public Xbyak::CodeGenerator {
  explicit EltwiseMulnChw16cNC(size_t code_size = 256 * 1024)
      : Xbyak::CodeGenerator(code_size) {
    // RDI is ptr x_input
    // RSI is ptr y_input
    // RDX is ptr output
    // RCX is height
    // r8 is width

    push(rbx);

    xor_(rax, rax);
    xor_(r10, r10);
    vmovups(zmm3, ptr[rsi]);

    L("h_loop");
    xor_(rbx, rbx);
    L("w_loop");
    vmovups(zmm2, ptr[rdi + rax]);
    vmulps(zmm1, zmm2, zmm3);
    vmovups(ptr[rdx + rax], zmm1);
    add(rax, 64);
    inc(rbx);
    cmp(r8, rbx);
    jnz("w_loop");
    inc(r10);
    cmp(r10, rcx);
    jnz("h_loop");

    pop(rbx);
    ret();
  }
};
#endif

528 529 530 531 532
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle