api_custom_impl.cc 19.1 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/api/lib/api_gen_utils.h"
19 20
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
21
#include "paddle/phi/api/lib/tensor_copy.h"
Z
zyfncg 已提交
22
#include "paddle/phi/common/type_traits.h"
23
#include "paddle/phi/core/compat/convert_utils.h"
24 25
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
26
#include "paddle/phi/infermeta/backward.h"
27 28 29
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
30
#include "paddle/phi/infermeta/unary.h"
31 32 33 34

namespace paddle {
namespace experimental {

35
////////////////// Forward api impls //////////////////////
36

37
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
38
  Tensor out;
39
  copy(x, place, blocking, &out);
40 41 42
  return out;
}

Z
zyfncg 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
Tensor embedding_impl(const Tensor& x,
                      const Tensor& weight,
                      int64_t padding_idx,
                      bool sparse) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  Tensor api_output;

  if (phi::DenseTensor::classof(weight.impl().get())) {
58
    auto kernel_result =
Z
zyfncg 已提交
59 60 61
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
62
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
63 64 65 66 67
    VLOG(6) << "embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});

Z
zyfncg 已提交
68
    auto* kernel_out = SetKernelOutput(&api_output);
Z
zyfncg 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  } else {
87
    auto kernel_result =
Z
zyfncg 已提交
88 89 90
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "sparse_weight_embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
91
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
92 93 94 95 96
    VLOG(6) << "sparse_weight_embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);

Z
zyfncg 已提交
97
    auto* kernel_out = SetKernelOutput(&api_output);
Z
zyfncg 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::SelectedRows&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  }
  return api_output;
}

119
std::vector<Tensor> split_impl(const Tensor& x,
120
                               const IntArray& num_or_sections,
121 122
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
123
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
124 125 126 127

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
128

129
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
130
      "split", {kernel_backend, kernel_layout, kernel_data_type});
131
  const auto& kernel = kernel_result.kernel;
C
chentianyu03 已提交
132 133 134 135 136 137 138 139 140 141
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
142
  if (num_or_sections.size() == 1) {
143 144 145 146 147
    if (num_or_sections.GetData()[0] < 0) {
      out_number = 1;
    } else {
      out_number = num_or_sections.GetData()[0];
    }
C
chentianyu03 已提交
148
  } else {
149
    out_number = num_or_sections.size();
C
chentianyu03 已提交
150 151 152
  }

  std::vector<Tensor> out;
Z
zyfncg 已提交
153
  auto dense_outs = SetKernelOutput(out_number, &out);
154
  std::vector<phi::MetaTensor> meta_outs;
155 156 157
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
158 159
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
160
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
161 162
  }

163
  phi::SplitInferMeta(
164
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
165 166

  using kernel_signature = void (*)(const platform::DeviceContext&,
167
                                    const phi::DenseTensor&,
168
                                    const phi::IntArray&,
169 170
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
171 172 173
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
174
               phi::IntArray(num_or_sections),
175
               phi::Scalar(axis),
C
chentianyu03 已提交
176 177 178 179
               dense_outs);

  return out;
}
180

181 182
////////////////// Backward(grad) api impls //////////////////////

H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

218
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
H
hong 已提交
219
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
220
  const auto& kernel = kernel_result.kernel;
H
hong 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
Z
zyfncg 已提交
234
  auto kernel_out_0 = SetKernelOutput(&std::get<0>(api_output));
H
hong 已提交
235 236
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
Z
zyfncg 已提交
237 238 239 240 241
  auto kernel_out_1 = SetKernelOutput(&std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(&std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(&std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(&std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(&std::get<5>(api_output));
H
hong 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

313
void imag_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
314 315 316
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
317
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
318
      "imag_grad", kernel_key);
319
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
320 321 322 323 324 325 326 327

  VLOG(6) << "imag_grad API kernel key: " << kernel_key;
  VLOG(6) << "imag_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

Z
zyfncg 已提交
328
  auto kernel_out = SetKernelOutput(x_grad);
Z
zyfncg 已提交
329 330 331 332 333 334 335 336 337 338
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

Z
zyfncg 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
void embedding_grad_impl(const Tensor& x,
                         const Tensor& weight,
                         const Tensor& out_grad,
                         int64_t padding_idx,
                         bool sparse,
                         Tensor* weight_grad) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding_grad API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  if (phi::DenseTensor::classof(weight.impl().get())) {
    std::string kernel_name =
        sparse ? "embedding_sparse_grad" : "embedding_grad";
356
    auto kernel_result =
Z
zyfncg 已提交
357 358 359
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
360
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
361 362 363 364 365 366 367
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
Z
zyfncg 已提交
368
      auto* kernel_out = SetSelectedRowsKernelOutput(weight_grad);
Z
zyfncg 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->dims());
      meta_out.set_dtype(input_weight->dtype());
      kernel_out->set_height(input_weight->dims()[0]);

      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
Z
zyfncg 已提交
388
      auto* kernel_out = SetKernelOutput(weight_grad);
Z
zyfncg 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  } else {
    std::string kernel_name = sparse ? "sparse_weight_embedding_sparse_grad"
                                     : "sparse_weight_embedding_grad";
408
    auto kernel_result =
Z
zyfncg 已提交
409 410 411
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
412
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
413 414 415 416 417 418 419
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
Z
zyfncg 已提交
420
      auto* kernel_out = SetSelectedRowsKernelOutput(weight_grad);
Z
zyfncg 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
Z
zyfncg 已提交
437
      auto* kernel_out = SetKernelOutput(weight_grad);
Z
zyfncg 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->GetCompleteDims());
      meta_out.set_dtype(input_weight->dtype());
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  }
}

458
void real_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
459 460 461
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
462
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
463
      "real_grad", kernel_key);
464
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
465 466 467 468 469 470 471 472

  VLOG(6) << "real_grad API kernel key: " << kernel_key;
  VLOG(6) << "real_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

Z
zyfncg 已提交
473
  auto kernel_out = SetKernelOutput(x_grad);
Z
zyfncg 已提交
474 475 476 477 478 479 480 481 482 483
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

484 485
}  // namespace experimental
}  // namespace paddle