layer_function_generator.py 9.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
D
dzhwinter 已提交
16 17
import re
import functools
18
import warnings
Y
yuyang18 已提交
19
import string
D
dzhwinter 已提交
20

21
from six.moves import cStringIO
22
from ..proto import framework_pb2
23 24
from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper
D
dzhwinter 已提交
25

Y
yuyang18 已提交
26
__all__ = ['deprecated', 'generate_layer_fn', 'autodoc', 'templatedoc']
D
dzhwinter 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
45 46 47 48
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


49 50 51 52 53
_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


Y
yuyang18 已提交
54 55 56 57 58 59 60
def escape_math(text):
    return _two_bang_pattern_.sub(
        r'$$\1$$',
        _single_dollar_pattern_.sub(r':math:`\1`',
                                    _two_dollar_pattern_.sub(r"!!\1!!", text)))


S
sneaxiy 已提交
61
def _generate_doc_string_(op_proto, additional_args_lines=None):
D
dzhwinter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

75
    buf = cStringIO()
76
    buf.write(escape_math(op_proto.comment))
D
dzhwinter 已提交
77 78 79 80
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
81 82 83 84 85
        buf.write(escape_math(each_input.comment))
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
D
dzhwinter 已提交
86 87
        buf.write('\n')

88 89
    skip_attrs = OpProtoHolder.generated_op_attr_names()

D
dzhwinter 已提交
90
    for each_attr in op_proto.attrs:
91 92
        if each_attr.name in skip_attrs:
            continue
D
dzhwinter 已提交
93 94 95 96 97
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
98
        buf.write(escape_math(each_attr.comment))
D
dzhwinter 已提交
99 100
        buf.write('\n')

S
sneaxiy 已提交
101 102 103 104 105 106 107
    if additional_args_lines is not None:
        for line in additional_args_lines:
            line = line.strip()
            buf.write('    ')
            buf.write(line)
            buf.write('\n')

D
dzhwinter 已提交
108 109 110 111 112 113
    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
114
        buf.write(escape_math(each_opt.comment))
D
dzhwinter 已提交
115 116 117 118

    return buf.getvalue()


119
def generate_layer_fn(op_type):
120
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
121 122

    Args:
123
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
124 125 126 127 128 129 130

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
131
        [output for output in op_proto.outputs if not output.intermediate]
D
dzhwinter 已提交
132
    intermediate_outputs = \
133
        [output for output in op_proto.outputs if output.intermediate]
D
dzhwinter 已提交
134 135 136

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
Y
yuyang18 已提交
137
                         "automatically generated. {0}".format(op_type))
D
dzhwinter 已提交
138 139 140

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
141
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
142 143 144 145

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
146
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
147 148 149 150

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
151
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
152 153 154 155 156 157 158 159 160 161
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
162 163 164 165
            if len(val) == 0:
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

        return dtype

Y
Yu Yang 已提交
180
    def func(*args, **kwargs):
D
dzhwinter 已提交
181 182
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
183
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
184 185 186 187 188 189 190

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
191 192 193
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
194 195 196
            inputs[ipt.name] = val

        outputs = dict()
197 198 199 200 201 202 203
        out = kwargs.pop(_convert_(o_name), [])
        if out:
            out_var = out[0] if (isinstance(out, list) or
                                 isinstance(out, tuple)) else out
        else:
            out_var = helper.create_tmp_variable(dtype=dtype)
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
204 205 206 207
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
208
        return helper.append_activation(out_var)
D
dzhwinter 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


def deprecated(func_or_class):
    """
    Deprecated warning decorator. It will result a warning message.
    Should be used before class or function, member function
    """

    @functools.wraps(func)
    def func_wrapper(*args, **kwargs):
        """
        Wrap func with deprecated warning
        """
Y
Yang Yu 已提交
226
        warnings.simplefilter('always', DeprecationWarning)  # turn off filter
D
dzhwinter 已提交
227 228 229 230
        warnings.warn(
            "Call to deprecated function {}.".format(func.__name__),
            category=DeprecationWarning,
            stacklevel=2)
Y
Yang Yu 已提交
231
        warnings.simplefilter('default', DeprecationWarning)  # reset filter
D
dzhwinter 已提交
232 233 234
        return func(*args, **kwargs)

    return func_wrapper
Y
Yang Yu 已提交
235 236


237 238 239 240 241 242 243
def autodoc(comment=""):
    def __impl__(func):
        func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
        ).get_op_proto(func.__name__)) + comment
        return func

    return __impl__
Y
yuyang18 已提交
244 245


Y
yuyang18 已提交
246
def templatedoc(op_type=None):
Y
yuyang18 已提交
247 248 249 250 251 252 253 254 255 256
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
Y
yuyang18 已提交
257
        Decorated function.
Y
yuyang18 已提交
258 259
    """

Y
yuyang18 已提交
260 261 262
    def trim_ending_dot(msg):
        return msg.rstrip('.')

Y
yuyang18 已提交
263
    def __impl__(func):
Y
yuyang18 已提交
264 265 266 267 268
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
Y
yuyang18 已提交
269
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
270 271 272 273

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
Y
yuyang18 已提交
274 275
            line = line.strip()
            if len(line) != 0:
Y
yuyang18 已提交
276
                comment += escape_math(line)
Y
yuyang18 已提交
277
                comment += " "
Y
yuyang18 已提交
278 279
            elif len(comment) != 0:
                comment += "\n    \n    "
Y
yuyang18 已提交
280

Y
yuyang18 已提交
281
        args = {"comment": trim_ending_dot(comment)}
Y
yuyang18 已提交
282 283
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
Y
yuyang18 已提交
284 285
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_input.comment)
Y
yuyang18 已提交
286 287 288
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
Y
yuyang18 已提交
289 290
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_attr.comment)
Y
yuyang18 已提交
291 292 293 294
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
Y
yuyang18 已提交
295 296
            args["{0}_comment".format(output_name)] = trim_ending_dot(
                each_opt.comment)
Y
yuyang18 已提交
297 298 299 300 301
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__