ps_trainer_pass.py 64.0 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import paddle
import paddle.compat as cpt
from ..ps.utils.public import *
from paddle.framework import core
20
from paddle.distributed.passes.pass_base import PassBase, register_pass
Z
ziyoujiyi 已提交
21 22
from paddle.fluid.transpiler.details.program_utils import delete_ops
from paddle.fluid.transpiler.collective import SingleProcessMultiThread
23 24
from _collections import deque, defaultdict
from paddle.fluid.framework import Program, Parameter
Z
ziyoujiyi 已提交
25 26 27 28


@register_pass("append_send_ops_pass")
class AppendSendOpsPass(PassBase):  # 该 pass 被多种模式复用
29

Z
ziyoujiyi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    def __init__(self):
        super(AppendSendOpsPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _append_send_op(self, program, union_vars, queue, is_sparse, table_id,
                        ps_mode):
        if queue == STEP_COUNTER:
            send_input_vars = []
        else:
            send_input_vars = [
                program.global_block().vars[union_var]
                for union_var in union_vars
            ]

        dummy_output = []
        if ps_mode in [DistributedMode.SYNC, DistributedMode.HALF_ASYNC]:
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
53 54 55 56 57 58 59 60 61 62 63 64
        program.global_block().append_op(type="send",
                                         inputs={"X": send_input_vars},
                                         outputs={"Out": dummy_output},
                                         attrs={
                                             "send_varnames": [queue],
                                             "is_sparse":
                                             is_sparse,
                                             "table_id":
                                             table_id,
                                             RPC_OP_ROLE_ATTR_NAME:
                                             RPC_OP_ROLE_ATTR_VALUE
                                         })
Z
ziyoujiyi 已提交
65 66 67

        return dummy_output

68
    def _append_barrier_op(self, program, dummys, trainer_id):
69 70 71 72 73 74 75 76 77 78 79
        program.global_block().append_op(type="send_barrier",
                                         inputs={"X": dummys},
                                         outputs={"Out": []},
                                         attrs={
                                             "trainer_id":
                                             trainer_id,
                                             "half_async":
                                             True,
                                             RPC_OP_ROLE_ATTR_NAME:
                                             RPC_OP_ROLE_ATTR_VALUE
                                         })
Z
ziyoujiyi 已提交
80 81 82 83

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        ps_mode = attrs['ps_mode']
84 85 86 87 88 89
        #if ps_mode == DistributedMode.GEO:
        #   send_ctx = get_geo_trainer_send_context(attrs)  # geo 模式, 没必要
        send_ctx = get_the_one_send_context(
            attrs,
            split_dense_table=attrs['is_heter_ps_mode'])  # async、sync 等各种模式

Z
ziyoujiyi 已提交
90
        dummys = []
91
        for merged_name, send in send_ctx.items():  # embedding_0.w_0@GRAD
Z
ziyoujiyi 已提交
92 93
            if send.is_sparse() and ps_mode != DistributedMode.GEO:
                continue
94 95
            if (not send.is_sparse()) and ps_mode == DistributedMode.GEO:
                continue
96 97
            if send.program_id() != id(attrs['loss'].block.program):
                continue
98 99
            if len(send.remote_sparse_ids()) > 0:
                continue
Z
ziyoujiyi 已提交
100 101 102
            is_sparse = 1 if send.is_sparse() else 0
            is_sparse = 2 if send.is_distributed() else is_sparse
            dummys.append(
103 104 105
                self._append_send_op(main_program, send.origin_varnames(),
                                     merged_name, is_sparse, send.table_id(),
                                     ps_mode))
Z
ziyoujiyi 已提交
106
        if ps_mode in [DistributedMode.SYNC, DistributedMode.HALF_ASYNC]:
107 108
            trainer_id = get_role_id(attrs['role_maker'])
            self._append_barrier_op(main_program, dummys, trainer_id)
Z
ziyoujiyi 已提交
109 110 111 112


@register_pass("distributed_ops_pass")
class DistributedOpsPass(PassBase):
113

Z
ziyoujiyi 已提交
114 115 116 117 118 119 120 121 122 123 124
    def __init__(self):
        super(DistributedOpsPass, self).__init__()
        self.w_2_table_id = {}
        self.emb_size = {}

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

125
    def _push_sparse_fuse(self, _program, push_sparse_ops, attrs, use_cvm_op):
Z
ziyoujiyi 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        if attrs['use_ps_gpu']:
            return
        if len(push_sparse_ops) == 0:
            return
        show = None
        clk = None
        use_entry = False
        for param, ops in push_sparse_ops.items():
            op_first = ops[0]
            break
        if op_first.has_attr("entry"):
            entry = op_first.attr("entry")
            entry = entry.split(':')
            if len(entry) == 3 and entry[0] == 'show_click_entry':
                show_var_name = entry[1]
                click_var_name = entry[2]
                if show_var_name in _program.global_block(
                ).vars and click_var_name in _program.global_block().vars:
                    show = _program.global_block().vars[show_var_name]
                    clk = _program.global_block().vars[click_var_name]
                    use_entry = True
                else:
                    warnings.warn(
                        'ShowClickEntry configured, but cannot find show/click var, will not use'
                    )

        if not use_entry:
            print('ShowClickEntry not configured, will not use')
            show = _program.global_block().create_var(
                name="show",
156
                dtype=core.VarDesc.VarType.FP32,
Z
ziyoujiyi 已提交
157 158
                persistable=False,
                stop_gradient=True)
159 160 161 162 163 164 165 166 167
            _program.global_block()._insert_op(index=0,
                                               type='fill_constant',
                                               inputs={},
                                               outputs={'Out': show},
                                               attrs={
                                                   'shape': [1],
                                                   'dtype': show.dtype,
                                                   'value': 1,
                                               })
Z
ziyoujiyi 已提交
168 169 170

            clk = _program.global_block().create_var(
                name="clk",
171
                dtype=core.VarDesc.VarType.FP32,
Z
ziyoujiyi 已提交
172 173
                persistable=False,
                stop_gradient=True)
174 175 176 177 178 179 180 181 182
            _program.global_block()._insert_op(index=0,
                                               type='fill_constant',
                                               inputs={},
                                               outputs={'Out': clk},
                                               attrs={
                                                   'shape': [1],
                                                   'dtype': clk.dtype,
                                                   'value': 0,
                                               })
Z
ziyoujiyi 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195

        for param, ops in push_sparse_ops.items():
            all_ops = _program.global_block().ops
            op_idxs = [all_ops.index(op) for op in ops]
            inputs = [
                _program.global_block().vars[op.input("Ids")[0]] for op in ops
            ]
            w = _program.global_block().vars[ops[0].output("W@GRAD")[0]]
            table_id = self.w_2_table_id[param]

            padding_idx = ops[0].attr("padding_idx")
            is_distributed = ops[0].attr("is_distributed")
            op_type = ops[0].type
196 197 198

            slots = [op.attr("slot") for op in ops]
            print('debug zcb slots: ', slots)
Z
ziyoujiyi 已提交
199 200 201 202 203 204 205 206
            outputs = [
                _program.global_block().vars[op.input("Out@GRAD")[0]]
                for op in ops
            ]

            for idx in op_idxs[::-1]:
                _program.global_block()._remove_op(idx)

207 208 209 210 211 212
            _program.global_block().append_op(type="distributed_push_sparse",
                                              inputs={
                                                  "Ids": inputs,
                                                  'W': w,
                                                  "Outputs": outputs,
                                                  "Shows": show,
213
                                                  "Clicks": clk,
214 215 216 217 218 219 220 221
                                              },
                                              outputs={"Outputs": outputs},
                                              attrs={
                                                  "is_distributed":
                                                  is_distributed,
                                                  "padding_idx": padding_idx,
                                                  "table_id": table_id,
                                                  "size": self.emb_size[param],
222 223
                                                  "use_cvm_op": use_cvm_op,
                                                  "slots": slots
224
                                              })
Z
ziyoujiyi 已提交
225 226

    def _pull_sparse_fuse(self, _program, pull_sparse_ops, attrs, send_ctx):
227

Z
ziyoujiyi 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        def dag_check_up_and_reorder(program, inputs, outputs):
            global_block = program.global_block()
            min_output_index = len(global_block.ops)
            max_input_index = -1
            input_indexes = [0] * len(global_block.ops)
            output_indexes = [0] * len(global_block.ops)
            for idx, op in enumerate(global_block.ops):
                for i in range(0, len(op.output_names)):
                    if input_indexes[idx] == 1:
                        break
                    outs = op.output(op.output_names[i])
                    for in_id, in_var in enumerate(inputs):
                        if in_var.name in outs:
                            input_indexes[idx] = 1
                            max_input_index = max(max_input_index, idx)
                            break

                for i in range(0, len(op.input_names)):
                    if output_indexes[idx] == 1:
                        break
                    ins = op.input(op.input_names[i])
                    for out_id, out_var in enumerate(outputs):
                        if out_var.name in ins:
                            output_indexes[idx] = 1
                            min_output_index = min(min_output_index, idx)

            for i in range(len(global_block.ops)):
                if input_indexes[i] == 1 and output_indexes[i] == 1:
                    warnings.warn(
                        "unable to re-arrange dags order to combine distributed embedding ops because a op both needs embedding table's output as input and produces ids as the same embedding table's input"
                    )
                    return

            if min_output_index < max_input_index:
                move_ops = []
                for i in range(min_output_index + 1, len(input_indexes)):
                    if input_indexes[i] == 1:
                        move_ops.append((global_block.ops[i], i))
                for i, op in enumerate(move_ops):
                    queue = list()
                    visited = set()
                    queue.append(op[1])
                    visited.add(op[0])
                    start = 0
                    while start < len(queue):
                        pos = queue[start]
                        op = global_block.ops[pos]
                        op_inputs = []
                        for k in range(0, len(op.input_names)):
                            ins = op.input(op.input_names[k])
                            op_inputs.append(ins)
                        for j in range(pos - 1, min_output_index - 1, -1):
                            op1 = global_block.ops[j]
                            if op1 in visited:
                                continue
                            found = False
                            for k in range(0, len(op1.output_names)):
                                outs = op1.output(op1.output_names[k])
                                for t in range(len(op_inputs)):
                                    for y in op_inputs[t]:
                                        if y in outs:
                                            found = True
                                            break
                                    if found:
                                        break
                                if found:
                                    break
                            if found:
                                if output_indexes[j] == True:
                                    warnings.warn(
                                        "unable to re-arrange dags order to combine distributed embedding ops"
                                    )
                                    return
                                queue.append(j)
                                visited.add(global_block.ops[j])
                        start = start + 1

                    queue.sort()
                    for index in queue:
                        desc = global_block.desc._insert_op(min_output_index)
                        desc.copy_from(global_block.ops[index].desc)
                        global_block.desc._remove_op(index + 1, index + 2)
                        global_block.ops[index].desc = desc
                        insert_op = global_block.ops.pop(index)
                        input_state = input_indexes.pop(index)
                        output_state = output_indexes.pop(index)
                        global_block.ops.insert(min_output_index, insert_op)
                        input_indexes.insert(min_output_index, input_state)
                        output_indexes.insert(min_output_index, output_state)
                        min_output_index = min_output_index + 1

                assert global_block.desc.op_size() == len(global_block.ops)
                for i in range(len(global_block.ops)):
                    assert global_block.desc.op(i) == global_block.ops[i].desc

323 324 325 326 327 328 329 330
        if attrs['use_ps_gpu']:
            gpups_inputs_idxs = list()
            gpups_outputs_idxs = list()
            gpups_inputs = list()
            gpups_outputs = list()
            gpups_w_size = list()
            gpups_min_distributed_idx = len(_program.global_block().ops) + 1

Z
ziyoujiyi 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        for param, ops in pull_sparse_ops.items():
            all_ops = _program.global_block().ops
            op_device = ""
            if attrs['is_heter_ps_mode']:
                op_device = ops[0].attr("op_device")
            inputs = [
                _program.global_block().vars[op.input("Ids")[0]] for op in ops
            ]
            w = _program.global_block().vars[ops[0].input("W")[0]]
            self.emb_size[param] = w.shape[1]

            grad_name = attrs['param_name_to_grad_name'][w.name]

            table_id = -1

            for name, ctx in send_ctx.items():
                if grad_name in ctx.origin_varnames():
                    table_id = ctx.table_id()

            if table_id == -1:
                raise ValueError(
                    "can not find suitable sparse table, please check")

            self.w_2_table_id[param] = table_id
            padding_idx = ops[0].attr("padding_idx")
            is_distributed = ops[0].attr("is_distributed")
            op_type = ops[0].type

            outputs = [
                _program.global_block().vars[op.output("Out")[0]] for op in ops
            ]

            dag_check_up_and_reorder(_program, inputs, outputs)

            op_idxs = [all_ops.index(op) for op in ops]

            for idx in op_idxs[::-1]:
                _program.global_block()._remove_op(idx)

            inputs_idxs = [-1] * len(inputs)
            outputs_idxs = [len(_program.global_block().ops) + 1] * len(outputs)

            for idx, op in enumerate(_program.global_block().ops):
                for i in range(0, len(op.output_names)):
                    outs = op.output(op.output_names[i])
                    for in_id, in_var in enumerate(inputs):
                        if in_var.name in outs:
                            inputs_idxs[in_id] = max(idx, inputs_idxs[in_id])
                for i in range(0, len(op.input_names)):
                    ins = op.input(op.input_names[i])
                    for out_id, out_var in enumerate(outputs):
                        if out_var.name in ins:
                            outputs_idxs[out_id] = min(idx,
                                                       outputs_idxs[out_id])

386 387 388 389 390 391 392 393 394 395
            if attrs['use_ps_gpu']:
                gpups_inputs_idxs.extend(inputs_idxs)
                gpups_outputs_idxs.extend(outputs_idxs)
                gpups_inputs.extend(inputs)
                gpups_outputs.extend(outputs)
                gpups_w_size.extend([w.shape[1]] * len(inputs))
                gpups_min_distributed_idx = min(min(op_idxs),
                                                gpups_min_distributed_idx)
                continue

Z
ziyoujiyi 已提交
396 397 398 399 400 401
            if min(outputs_idxs) - max(inputs_idxs) >= 1:
                if max(inputs_idxs) == -1:
                    distributed_idx = min(op_idxs)
                else:
                    distributed_idx = max(inputs_idxs) + 1

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                _program.global_block()._insert_op(
                    index=distributed_idx,
                    type="distributed_lookup_table",
                    inputs={
                        "Ids": inputs,
                        'W': w
                    },
                    outputs={"Outputs": outputs},
                    attrs={
                        "is_distributed": is_distributed,
                        "padding_idx": padding_idx,
                        "table_id": table_id,
                        "lookup_table_version": op_type,
                        "op_device": op_device
                    })
Z
ziyoujiyi 已提交
417 418 419 420 421 422 423
            else:
                for i in range(len(inputs_idxs)):
                    distributed_idx = op_idxs[i]

                    _program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
424 425 426 427
                        inputs={
                            "Ids": [inputs[i]],
                            'W': w
                        },
Z
ziyoujiyi 已提交
428 429 430 431 432 433 434 435 436
                        outputs={"Outputs": [outputs[i]]},
                        attrs={
                            "is_distributed": is_distributed,
                            "padding_idx": padding_idx,
                            "table_id": table_id,
                            "lookup_table_version": op_type,
                            "op_device": op_device
                        })

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        if attrs['use_ps_gpu'] and len(gpups_inputs) > 0:
            if max(gpups_inputs_idxs) > 0:
                raise ValueError("There can't be ops before embedding in gpups")

            _program.global_block()._insert_op(index=gpups_min_distributed_idx,
                                               type="pull_gpups_sparse",
                                               inputs={
                                                   "Ids": gpups_inputs,
                                               },
                                               outputs={"Out": gpups_outputs},
                                               attrs={
                                                   "size": gpups_w_size,
                                                   "is_distributed": True,
                                                   "is_sparse": True
                                               })
            PSGPU = paddle.fluid.core.PSGPU()
            try:
                gpu_slot = [int(var.name) for var in gpups_inputs]
            except (ValueError):
                raise ValueError(
                    "The slot name in gpups Should be able to convert to integer."
                )
            PSGPU.set_slot_vector(gpu_slot)
            gpu_mf_sizes = [x - 3 for x in gpups_w_size]
            PSGPU.set_slot_dim_vector(gpu_mf_sizes)

Z
ziyoujiyi 已提交
463 464 465 466 467
    def _get_pull_sparse_ops(self, _program, attrs):
        pull_sparse_ops = {}
        pull_sparse_ids = {}
        push_sparse_ops = {}
        ops = {}
468
        use_cvm_op = False
Z
ziyoujiyi 已提交
469 470 471 472
        for op in _program.global_block().ops:
            if op.type in SPARSE_OP_TYPE_DICT.keys() \
                    and op.attr('remote_prefetch') is True:
                param_name = op.input(SPARSE_OP_TYPE_DICT[op.type])[0]
Z
ziyoujiyi 已提交
473 474
                if attrs['is_heter_ps_mode'] and not attrs['is_fl_ps_mode']:
                    # TODO: trick for matchnet, need to modify for heter_ps
Z
ziyoujiyi 已提交
475
                    param_name += op.input("Ids")[0][0]
476 477
                if param_name in attrs['local_sparse']:  # for recall/ncf model
                    continue
Z
ziyoujiyi 已提交
478 479 480 481 482 483
                ops = pull_sparse_ops.get(param_name, [])
                ops.append(op)
                pull_sparse_ops[param_name] = ops
                ids = pull_sparse_ids.get(param_name, [])
                ids.append(op.input("Ids")[0])
                pull_sparse_ids[param_name] = ids
484 485 486
            if op.type == 'cvm':
                use_cvm_op = True

Z
ziyoujiyi 已提交
487 488 489
        for op in _program.global_block().ops:
            if op.type in SPARSE_GRAD_OP_TYPE_DICT.keys():
                param_name = op.input(SPARSE_GRAD_OP_TYPE_DICT[op.type])[0]
490 491
                if param_name in pull_sparse_ids and op.input(
                        "Ids")[0] in pull_sparse_ids[param_name]:
Z
ziyoujiyi 已提交
492 493 494 495
                    ops = push_sparse_ops.get(param_name, [])
                    ops.append(op)
                    push_sparse_ops[param_name] = ops

496
        return pull_sparse_ops, push_sparse_ops, use_cvm_op
Z
ziyoujiyi 已提交
497 498 499

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
500
        pull_sparse_ops, push_sparse_ops, use_cvm_op = self._get_pull_sparse_ops(
Z
ziyoujiyi 已提交
501
            main_program, attrs)
502 503
        print("is_heter_ps_mode in distributed_ops_pass {}?".format(
            attrs['is_heter_ps_mode']))
Z
ziyoujiyi 已提交
504 505 506
        send_ctx = get_the_one_send_context(
            attrs, split_dense_table=attrs['is_heter_ps_mode'])
        self._pull_sparse_fuse(main_program, pull_sparse_ops, attrs, send_ctx)
507
        self._push_sparse_fuse(main_program, push_sparse_ops, attrs, use_cvm_op)
Z
ziyoujiyi 已提交
508 509 510 511


@register_pass("delete_optimizer_pass")
class DeleteOptimizesPass(PassBase):
512

Z
ziyoujiyi 已提交
513 514 515 516 517 518 519 520 521
    def __init__(self):
        super(DeleteOptimizesPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

522 523 524 525 526
    def _delete_optimizer_op_and_vars(self, _program, remote_optimize_ops,
                                      local_optimize_ops):
        local_optimize_vars = []
        remote_optimize_vars = []
        remote_optimize_op_role_vars = []
Z
ziyoujiyi 已提交
527 528
        optimize_need_delete_vars = []

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        for op in local_optimize_ops:
            local_optimize_vars.extend(op.input_arg_names)

        for op in remote_optimize_ops:
            remote_optimize_vars.extend(op.input_arg_names)
            remote_optimize_op_role_vars.extend(op.attr("op_role_var"))

        remote_optimize_vars = list(
            set(remote_optimize_vars
                ))  # param + grad + optimizer_state + learning_rate
        remote_optimize_op_role_vars = list(
            set(remote_optimize_op_role_vars))  # param + grad
        print(
            "remote_optimize_vars: {}, remote_optimize_op_role_vars: {}, local_optimize_vars: {}"
            .format(remote_optimize_vars, remote_optimize_op_role_vars,
                    local_optimize_vars))
        for var in remote_optimize_vars:
            if var in local_optimize_vars:
                continue
            if var not in remote_optimize_op_role_vars:
Z
ziyoujiyi 已提交
549 550 551
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

552
        delete_ops(_program.global_block(), remote_optimize_ops)
Z
ziyoujiyi 已提交
553 554 555 556 557 558
        for var in need_delete_optimize_vars:
            if _program.global_block().has_var(var):
                _program.global_block()._remove_var(var)

    def _add_lr_var(self, main_program, attrs):
        # Todo: hard code for pe
559 560 561 562 563 564 565 566
        lr_var = attrs['origin_main_program'].global_block(
        ).vars["learning_rate_0"]
        main_program.global_block().create_var(name=lr_var.name,
                                               shape=lr_var.shape,
                                               dtype=lr_var.dtype,
                                               type=lr_var.type,
                                               lod_level=lr_var.lod_level,
                                               persistable=True)
Z
ziyoujiyi 已提交
567 568 569

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
570 571 572
        all_optimize_ops = get_optimize_ops(main_program)
        remote_optimize_ops = get_optimize_ops(main_program,
                                               attrs['remote_sparse'])
Z
ziyoujiyi 已提交
573
        lr_ops = get_lr_ops(main_program)
574 575 576 577 578
        remote_optimize_ops.extend(lr_ops)
        local_optimize_ops = list(
            set(all_optimize_ops) - set(remote_optimize_ops))
        self._delete_optimizer_op_and_vars(main_program, remote_optimize_ops,
                                           local_optimize_ops)
Z
ziyoujiyi 已提交
579 580 581 582 583 584 585

        if hasattr(attrs['origin_main_program'], 'lr_sheduler'):
            self._add_lr_var(main_program, attrs)


@register_pass("delete_extra_optimizer_pass")
class DeleteExtraOptimizerPass(PassBase):
586

Z
ziyoujiyi 已提交
587 588 589 590 591 592 593 594 595 596 597
    def __init__(self):
        super(DeleteExtraOptimizerPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
598 599
        remote_optimize_vars = []
        remote_optimize_op_role_vars = []
Z
ziyoujiyi 已提交
600
        optimize_need_delete_vars = []
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        all_optimize_ops = get_optimize_ops(main_program)
        remote_optimize_ops = get_optimize_ops(main_program,
                                               attrs['remote_sparse'])
        local_optimize_ops = list(
            set(all_optimize_ops) - set(remote_optimize_ops))

        local_optimize_vars = []
        for op in local_optimize_ops:
            local_optimize_vars.extend(op.input_arg_names)

        for op in remote_optimize_ops:
            remote_optimize_vars.extend(op.input_arg_names)
            remote_optimize_op_role_vars.extend(op.attr("op_role_var"))

        remote_optimize_vars = list(set(remote_optimize_vars))
        remote_optimize_op_role_vars = list(set(remote_optimize_op_role_vars))
        for var in remote_optimize_vars:
            if var in local_optimize_vars:
                continue
Z
ziyoujiyi 已提交
620 621
            if 'learning_rate_0' == var:
                continue
622
            if var not in remote_optimize_op_role_vars:
Z
ziyoujiyi 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        init_ops = []
        for var in need_delete_optimize_vars:
            param_init_op = []
            for op in startup_program.global_block().ops:
                if var in op.output_arg_names:
                    param_init_op.append(op)
            init_ops.extend(param_init_op)
        delete_ops(startup_program.global_block(), init_ops)

        for var in need_delete_optimize_vars:
            if startup_program.global_block().has_var(var):
                startup_program.global_block()._remove_var(var)


@register_pass("fake_init_ops_pass")
class FakeInitOpsPass(PassBase):
642

Z
ziyoujiyi 已提交
643 644 645 646 647 648 649 650 651 652
    def __init__(self):
        super(FakeInitOpsPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _get_sparse_table_names(self, attrs):
W
wangguanqun 已提交
653
        dist_varnames = get_sparse_tablenames(attrs['origin_main_programs'],
Z
ziyoujiyi 已提交
654
                                              True)
W
wangguanqun 已提交
655
        sparse_varnames = get_sparse_tablenames(attrs['origin_main_programs'],
Z
ziyoujiyi 已提交
656 657 658
                                                False)
        return list(set(dist_varnames + sparse_varnames))

659 660
    def _fake_init_sparsetable(self, startup_program, sparse_table_names,
                               attrs):
Z
ziyoujiyi 已提交
661 662
        # delete table init op
        for table_name in sparse_table_names:
663 664 665 666
            table_var = startup_program.global_block().vars[table_name]
            if str(table_var).split(
                    ":")[0].strip().split()[-1] in attrs['local_sparse']:
                continue
Z
ziyoujiyi 已提交
667
            table_param_init_op = []
668
            for op in startup_program.global_block().ops:
Z
ziyoujiyi 已提交
669 670 671 672
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
673 674
                raise ValueError("table init op num should be 1, now is " +
                                 str(init_op_num))
Z
ziyoujiyi 已提交
675
            table_init_op = table_param_init_op[0]
676
            startup_program.global_block().append_op(
Z
ziyoujiyi 已提交
677 678 679 680
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
681
            delete_ops(startup_program.global_block(), table_param_init_op)
Z
ziyoujiyi 已提交
682 683 684 685

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        sparse_tables = self._get_sparse_table_names(attrs)
686
        self._fake_init_sparsetable(startup_program, sparse_tables, attrs)
Z
ziyoujiyi 已提交
687 688 689 690


@register_pass("ps_gpu_pass")
class PsGpuPass(PassBase):
691

Z
ziyoujiyi 已提交
692 693 694 695 696 697 698 699 700 701
    def __init__(self):
        super(PsGpuPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _add_push_box_sparse_op(self, program):
D
danleifeng 已提交
702 703 704 705
        insert_index = -1
        for idx, op in list(enumerate(program.global_block().ops)):
            if op.type == "lookup_table_grad":
                insert_index = idx
Z
ziyoujiyi 已提交
706
        for op in program.global_block().ops:
D
danleifeng 已提交
707
            if op.type != "pull_box_sparse" and op.type != "pull_gpups_sparse":
Z
ziyoujiyi 已提交
708 709 710 711
                continue
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(set()), [])
            for op_desc in grad_op_desc:
D
danleifeng 已提交
712 713
                new_op_desc = program.global_block().desc._insert_op(
                    insert_index + 1)
Z
ziyoujiyi 已提交
714 715
                new_op_desc.copy_from(op_desc)
                new_op_desc._set_attr(op_role_attr_name, backward)
716 717
                new_op = paddle.fluid.framework.Operator(
                    program.global_block(), new_op_desc)
D
danleifeng 已提交
718 719
                program.global_block().ops.insert(insert_index + 1, new_op)
                program.global_block()._sync_with_cpp()
Z
ziyoujiyi 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

    def _remove_optimizer_var(self, program):
        embedding_w = {}
        for idx, op in list(enumerate(program.global_block().ops)):
            if op.type == "lookup_table_grad":
                for name in op.input("W"):
                    embedding_w[name] = 1

        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []
        for op in get_optimize_ops(program):
            for name in op.input("Param"):
                if name in embedding_w:
                    optimize_op_role_vars.extend(op.attr("op_role_var"))
                    for key_name in op.input_names:
                        if key_name == "LearningRate":
                            continue
                        for var in op.input(key_name):
                            optimize_vars.append(var)

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        for name in need_delete_optimize_vars:
            if program.global_block().has_var(name):
                program.global_block()._remove_var(name)

    def _remove_lookup_table_grad_op_and_var(self, program):
        lookup_table_grad_var = {}
        remove_op_index = []
        remove_var = []
        for idx, op in list(enumerate(program.global_block().ops)):
            if op.type == "lookup_table_grad":
                for name in op.output("W@GRAD"):
                    lookup_table_grad_var[name] = 1
                    remove_op_index.append(idx)
                    remove_var.append(name)
                for name in op.input("W"):
                    lookup_table_grad_var[name] = 1

        for idx, op in list(enumerate(program.global_block().ops)):
767
            if op.type == "pull_box_sparse" or op.type == "pull_gpups_sparse":
Z
ziyoujiyi 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
                continue
            for key_name in op.input_names:
                for var in op.input(key_name):
                    if var in lookup_table_grad_var:
                        remove_op_index.append(idx)
                        break

        remove_op_index = list(set(remove_op_index))
        remove_op_index.sort(reverse=True)
        for idx in remove_op_index:
            program.global_block()._remove_op(idx)
        for name in remove_var:
            program.global_block()._remove_var(name)

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        self._add_push_box_sparse_op(main_program)
        self._remove_optimizer_var(main_program)
        self._remove_lookup_table_grad_op_and_var(main_program)


@register_pass("ps_transpile_pass")
class PsTranspilePass(PassBase):
791

Z
ziyoujiyi 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804
    def __init__(self):
        super(PsTranspilePass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        t = SingleProcessMultiThread()
        env = get_dist_env()
805 806 807 808 809 810
        t.transpile(startup_program=startup_program,
                    main_program=main_program,
                    rank=env["trainer_id"],
                    endpoints=env["trainer_endpoints"],
                    current_endpoint=env['current_endpoint'],
                    wait_port=False)
Z
ziyoujiyi 已提交
811 812 813 814


@register_pass("split_heter_worker_ops_pass")
class SplitHeterWorkerOpsPass(PassBase):
815

Z
ziyoujiyi 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
    def __init__(self):
        super(SplitHeterWorkerOpsPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _create_heter_program(self, program, attrs, heter_program,
                              program_block_ops_list, heter_ops,
                              block_var_detail):
        # This function mainly includes the following contents:
        # 1. For every heter block:
        #     a) copy heter device op from origin program
        #     b) create variables which belong to heter op:
        #         -> if variable is persistable, clone it in global_scope
        #         -> if variable is temp, create it in heter block
        #     c) create communicate related op as follow:
        #         joint_var.0_1 -> slice -> reshape -> origin_var
        #         origin_var -> origin_program
        #         reshape -> concat -> joint_var.1_2
        #     d) copy send op from origin program for var@grad which loacted in current heter block
        #     e) re-check every op in current blcok if its device is not current heter devie
        # 2. Create send op for step counter in last heter-block
        # 3. Create Listen&Serv OP and Send&Recv OP for distributed training
        # 4. update CompileTimeStrategy for heter_program

        optimizer_block = []
        grad_to_block_id = []
        send_grad_var_list = []

        pre_block_idx = heter_program.num_blocks - 1
        role_maker = attrs['role_maker']
        current_device = role_maker._heter_device_type().lower()
        stage_id = int(role_maker._get_stage_id())

853 854 855 856
        heter_block_ops_forward = program_block_ops_list[stage_id -
                                                         1]["forward"]
        heter_block_ops_backward = program_block_ops_list[stage_id -
                                                          1]["backward"]
Z
ziyoujiyi 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

        heter_block = heter_program._create_block(pre_block_idx)
        optimizer_block.append(heter_block)
        for _, op in enumerate(heter_block_ops_forward):
            block_append_op(heter_program, program, heter_block, op)

        entrance_vars = block_var_detail[stage_id - 1]["forward"]["entrance"]
        add_vars_by_var_list(entrance_vars, program, heter_program, heter_block)
        exit_vars = block_var_detail[stage_id - 1]["forward"]["exit"]
        add_vars_by_var_list(exit_vars, program, heter_program, heter_block)

        first_op_index_fp = len(heter_block.ops)

        if stage_id < len(program_block_ops_list):

            heter_block_bp = heter_program._create_block(pre_block_idx)
            optimizer_block.append(heter_block_bp)

            for _, op in enumerate(heter_block_ops_backward):
                block_append_op(heter_program, program, heter_block_bp, op)

878 879
            bp_entrance_vars = block_var_detail[stage_id -
                                                1]["backward"]["entrance"]
Z
ziyoujiyi 已提交
880 881 882 883 884
            add_vars_by_var_list(bp_entrance_vars, program, heter_program,
                                 heter_block_bp)
            bp_exit_vars = block_var_detail[stage_id - 1]["backward"]["exit"]
            add_vars_by_var_list(bp_exit_vars, program, heter_program,
                                 heter_block_bp)
885 886 887 888
            backward_comm_info = get_communicate_var_info(program,
                                                          stage_id,
                                                          bp_entrance_vars,
                                                          type="backward")
Z
ziyoujiyi 已提交
889 890 891 892 893 894 895 896

            grad_to_block_id.append(backward_comm_info["block_input_var_name"] +
                                    ":" + str(heter_block_bp.idx))

        else:
            for _, op in enumerate(heter_block_ops_backward):
                block_append_op(heter_program, program, heter_block, op)

897 898
            bp_entrance_vars = block_var_detail[stage_id -
                                                1]["backward"]["entrance"]
Z
ziyoujiyi 已提交
899 900 901 902 903 904 905 906
            add_vars_by_var_list(bp_entrance_vars, program, heter_program,
                                 heter_block)
            bp_exit_vars = block_var_detail[stage_id - 1]["backward"]["exit"]
            add_vars_by_var_list(bp_exit_vars, program, heter_program,
                                 heter_block)

            heter_block_bp = heter_block

907 908 909 910
        forward_comm_info = get_communicate_var_info(program,
                                                     stage_id,
                                                     entrance_vars,
                                                     type="forward")
Z
ziyoujiyi 已提交
911

912 913
        grad_to_block_id.append(forward_comm_info["block_input_var_name"] +
                                ":" + str(heter_block.idx))
Z
ziyoujiyi 已提交
914 915 916 917 918 919 920

        first_op_index_bp = len(heter_block_bp.ops)

        if stage_id <= len(block_var_detail) - 1:
            static_var = insert_communicate_op(program, role_maker, heter_block,
                                               stage_id, first_op_index_fp,
                                               block_var_detail, current_device)
921 922 923 924 925
        static_var_bp = insert_communicate_op(program, role_maker,
                                              heter_block_bp, stage_id,
                                              first_op_index_bp,
                                              block_var_detail, current_device,
                                              False)
Z
ziyoujiyi 已提交
926 927

        # add send op
928 929 930
        send_grad_var_list = add_send_op(
            program, heter_block_bp,
            block_var_detail[stage_id - 1]["backward"]["persistables"])
Z
ziyoujiyi 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

        # add step conter
        send_input_vars = []
        dummy_output = []
        pserver_endpoints = get_ps_endpoints(role_maker)
        attrs = {
            "message_to_block_id": grad_to_block_id,
            "optimize_blocks": optimizer_block,
            # runtime attribute
            "endpoint": get_heter_worker_endpoint(role_maker),
            "fanin": len(get_previous_stage_trainers(role_maker)),
            "pserver_id": get_role_id(role_maker),
            "distributed_mode": attrs['ps_mode'],
            "rpc_exec_thread_num": int(os.getenv("CPU_NUM", 32)),
            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
        }
        # append the listen_and_serv op
948 949 950 951
        heter_program.global_block().append_op(type="heter_listen_and_serv",
                                               inputs={'X': []},
                                               outputs={},
                                               attrs=attrs)
Z
ziyoujiyi 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
        # TODO check heter program

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        """
        split heter worker program from origin-program
        1. find heter op (located on different device)
        2. find input&output of every heter-block
        3. create heter worker program, add listen&serv op
        """
        attrs = pass_ctx._attrs
        default_deveice = "cpu"
        program, heter_ops, _, program_block_ops = find_heter_ops(
            main_program, default_deveice)
        if len(heter_ops) == 0:
            warnings.warn(
                "Currently running in Heter Parameter Server mode, but no OP running on heterogeneous devices, Please check your code."
            )
            main_program = program
            return

        program_block_ops = union_forward_gradient_op(program_block_ops)
        block_vars_detail = find_block_joints(program, program_block_ops,
                                              heter_ops)
        heter_program = framework.Program()
        self._create_heter_program(program, attrs, heter_program,
                                   program_block_ops, heter_ops,
                                   block_vars_detail)
        main_program = heter_program


@register_pass("split_trainer_ops_pass")
class SplitTrainerOpsPass(PassBase):
984

Z
ziyoujiyi 已提交
985 986 987 988 989 990 991 992 993
    def __init__(self):
        super(SplitTrainerOpsPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

994 995 996 997 998 999 1000 1001 1002 1003
    def _replace_ops_by_communicate_op(self, program, attrs, heter_block_index,
                                       ops_list, block_var_detail):
        all_op = program.global_block().ops
        start_op = ops_list[0]
        first_op_idx = -1
        for op in all_op:
            if str(op) == str(start_op):
                first_op_idx = all_op.index(op)
                break
        assert first_op_idx != -1
1004
        delete_same_ops(program.global_block(), ops_list)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

        entrance_var = []
        role_maker = attrs['role_maker']
        if heter_block_index == 1:
            next_heter_worker_endpoints = get_next_stage_trainers(role_maker)

            entrance_var = block_var_detail[heter_block_index]["forward"][
                "entrance"]

            comm_info = get_communicate_var_info(program, heter_block_index + 1,
                                                 entrance_var)
            program.global_block()._insert_op(
                index=first_op_idx,
                type="send_and_recv",
                inputs={"X": program.global_block().vars[entrance_var[0]]},
                outputs={"Out": []},
                attrs={
                    "mode": "forward",
                    "send_var_name": entrance_var + ["microbatch_id"],
                    "recv_var_name": [],
                    "message_name": comm_info["block_input_var_name"],
                    "next_endpoints": next_heter_worker_endpoints,
                    "previous_endpoints": [],
                    "trainer_id": get_role_id(role_maker),
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        return entrance_var

    def _remove_var_pair_by_grad(self, var_name, attrs):
        for index, pair in enumerate(attrs['merged_variables_pairs']):
            var = pair[0]
            var_grad = pair[1]
            if var_grad.merged_var.name == var_name:
                del attrs['merged_variables_pairs'][index]

        for index, pair in enumerate(attrs['merged_dense_pairs']):
            var = pair[0]
            var_grad = pair[1]
            if var_grad.merged_var.name == var_name:
                del attrs['merged_dense_pairs'][index]
                return

        for index, pair in enumerate(attrs['merged_sparse_pairs']):
            var = pair[0]
            var_grad = pair[1]
            if var_grad.merged_var.name == var_name:
                del attrs['merged_sparse_pairs'][index]
                return

    def _remove_trainer_send_op(self, program, attrs, heter_block_index,
                                block_var_detail):
        # if trainer do FF->BP->SEND, it has follow vars: var, var@GRAD
        # if trainer only do SEND, it has one var: var@GRAD
        # Delete Send op ,if trainer doesn't has pair var (var<->var@GRAD)
        persistables = block_var_detail[heter_block_index]["forward"]["persistables"] + \
                    block_var_detail[heter_block_index]["backward"]["persistables"]
        need_remove_send_op = []
        need_remove_grad_var = []
        for op in find_send_op(program):
            input_list, _ = find_op_input_output(program,
                                                 program.global_block(), op)
            for var_name in input_list:
                origin_var_name = var_name.split("@GRAD")[0]
                if origin_var_name in persistables:
                    need_remove_send_op.append(op)
                    need_remove_grad_var.append(var_name)
        need_remove_send_op = list(set(need_remove_send_op))
        delete_ops(program.global_block(), need_remove_send_op)
        for grad_var_name in need_remove_grad_var:
            self._remove_var_pair_by_grad(grad_var_name, attrs)

Z
ziyoujiyi 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    def _create_trainer_program(self, program, origin_program, attrs,
                                program_block_ops_list, block_var_detail):
        # This function mainly includes the following contents:
        # 1. For every heter block in origin program
        #     a) delete heter op and related variables
        #     b) add send&recv op
        #     c) add communicate ops as follows:
        #         origin_var -> reshape -> concat -> joint_var.0_1
        #         send&recv op(send joint_var.0_1; recv joint_var.1_2)
        #         joint_var.1_2 -> slice -> reshape -> origin_var
        #     d) remove send op which related var@grad is not in trainer program
        # 2. check every op's device
        static_var = []
        for heter_block_index in range(1, len(program_block_ops_list)):
            ops_list = program_block_ops_list[heter_block_index][
                "forward"] + program_block_ops_list[heter_block_index][
                    "backward"]
1094
            static_var += self._replace_ops_by_communicate_op(
Z
ziyoujiyi 已提交
1095
                program, attrs, heter_block_index, ops_list, block_var_detail)
1096 1097
            self._remove_trainer_send_op(program, attrs, heter_block_index,
                                         block_var_detail)
Z
ziyoujiyi 已提交
1098 1099 1100 1101 1102

        optimizer_block = []
        grad_to_block_id = []

        bp_ops_list = program_block_ops_list[0]["backward"]
1103
        delete_same_ops(program.global_block(), bp_ops_list)
1104 1105
        delete_trainer_useless_var(program, static_var)
        backward_block = create_backward_block(program, origin_program,
Z
ziyoujiyi 已提交
1106 1107 1108
                                               bp_ops_list, block_var_detail)

        bp_entrance_vars = block_var_detail[0]["backward"]["entrance"]
1109 1110 1111 1112
        backward_comm_info = get_communicate_var_info(origin_program,
                                                      1,
                                                      bp_entrance_vars,
                                                      type="backward")
Z
ziyoujiyi 已提交
1113

1114 1115
        grad_to_block_id.append(backward_comm_info["block_input_var_name"] +
                                ":" + str(backward_block.idx))
Z
ziyoujiyi 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        optimizer_block.append(backward_block)
        role_maker = attrs['role_maker']
        attrs = {
            "message_to_block_id": grad_to_block_id,
            "optimize_blocks": optimizer_block,
            # runtime attribute
            "endpoint":
            get_trainer_endpoint(role_maker),  ## get trainer endpoint
            "fanin": 0,  ## get heter worker
            "pserver_id": get_role_id(role_maker),
            "distributed_mode": attrs['ps_mode'],
            "rpc_exec_thread_num": int(os.getenv("CPU_NUM", 32)),
            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
        }
        # append the listen_and_serv op
1131 1132 1133 1134 1135
        program.global_block()._insert_op(index=0,
                                          type="heter_listen_and_serv",
                                          inputs={'X': []},
                                          outputs={},
                                          attrs=attrs)
Z
ziyoujiyi 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

        ## TODO add check for bp block
        #check_op_device(program.global_block(), DEFAULT_DEVICE)

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        """
        split cpu-trainer program from origin-program
        1. find heter op (located on different device)
        2. find input&output of every heter-block
        3. create cpu-trainer program, add send&recv op 
        """
        attrs = pass_ctx._attrs
        default_device_ = 'cpu'
        program, heter_ops, default_ops, program_block_ops = find_heter_ops(
            main_program, default_device_)
        program_block_ops = union_forward_gradient_op(program_block_ops)

        block_vars_detail = find_block_joints(program, program_block_ops,
                                              heter_ops)
        trainer_program = program.clone()
        self._create_trainer_program(trainer_program, program, attrs,
                                     program_block_ops, block_vars_detail)
        main_program = trainer_program


@register_pass("set_heter_pipeline_opt_pass")
class SetHeterPipelineOptPass(PassBase):
1163

Z
ziyoujiyi 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    def __init__(self):
        super(SetHeterPipelineOptPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        role_maker = attrs['role_maker']
        num_microbatches = attrs['user_defined_strategy'].pipeline_configs[
            'accumulate_steps']

1179
        startup_program._heter_pipeline_opt = {
Z
ziyoujiyi 已提交
1180 1181 1182
            "startup_program": startup_program,
            "pipeline_stage": int(role_maker._get_stage_id()) - 1,
            "heter_place": role_maker._heter_device(),
1183
            "is_fl_mode": 1
Z
ziyoujiyi 已提交
1184
        }
1185
        main_program._heter_pipeline_opt = {
Z
ziyoujiyi 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
            "trainer": "HeterPipelineTrainer",
            "device_worker": "HeterSection",
            "trainers":
            role_maker._get_stage_trainers(),  ## trainer num in each stage
            "trainer_id": int(role_maker._role_id()),
            "pipeline_stage": int(role_maker._get_stage_id()) - 1,
            "num_pipeline_stages": int(role_maker._get_num_stage()),
            "section_program": main_program,
            "num_microbatches": num_microbatches,
            "heter_place": role_maker._heter_device(),
1196
            "is_fl_mode": 1
Z
ziyoujiyi 已提交
1197
        }
1198 1199 1200 1201


@register_pass("split_fl_ops_pass")
class SplitFlOpsPass(PassBase):
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    def __init__(self):
        super(SplitFlOpsPass, self).__init__()
        self.PART_A_DEVICE_FlAG = 'gpu:0'
        self.PART_A_JOINT_OP_DEVICE_FlAG = 'gpu:2'
        self.PART_B_DEVICE_FlAG = 'gpu:1'
        self.PART_B_JOINT_OP_DEVICE_FlAG = 'gpu:3'

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _insert_encrypt_op(self):
        pass

    def _insert_decrypt_op(self):
        pass

    def _clear_op_device_flag(self, program):
        for block in program.blocks:
            for op in block.ops:
                device = op.attr(OP_DEVICE_KEY)
                op._set_attr(OP_DEVICE_KEY, '') if device != '' else None

    def _split_fl_program(self):
        self.partA_ops = []
        self.partB_ops = []
        party_program_map = defaultdict(Program)
        block = self.ori_main_program.block(0)
        for op in block.ops:
            device = op.attr(OP_DEVICE_KEY)
            if device == self.PART_A_DEVICE_FlAG or device == '' or device == self.PART_A_JOINT_OP_DEVICE_FlAG:
                program = party_program_map['a']
                self.partA_ops.append(op)
            elif device == self.PART_B_DEVICE_FlAG or device == self.PART_B_JOINT_OP_DEVICE_FlAG:
                program = party_program_map['b']
                self.partB_ops.append(op)
            op_desc = op.desc
            ap_op = program.global_block().desc.append_op()
            ap_op.copy_from(op_desc)
            ap_op._set_attr(OP_DEVICE_KEY, device)

        for key in ['a', 'b']:
            program = party_program_map[key]
            program._sync_with_cpp()

        return party_program_map

    def _insert_partA_communicate_op(self, block, idx):
        comm_info = "forward_joint_{}_{}@fl_ps".format(1, 2)
        block._insert_op(
            idx,
            type='send_and_recv',
            inputs={'X': self.partA_to_partB_tensor},
            outputs={'Out': []},
            attrs={
                'mode': 'forward',  # mode 直接关联前向和反向 channel 选择
                'send_var_name':
                self.partA_to_partB_tensor_name + ["microbatch_id"],
                'recv_var_name': [],
                'message_name': comm_info,
                'next_endpoints':
                get_next_stage_trainers(self.role_maker),  # partB_endpoints
                'previous_endpoints':
                get_previous_stage_trainers(self.role_maker),
                'trainer_id': get_role_id(self.role_maker),  # global id
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })
        return

    def _insert_partB_communicate_op(self, block, idx):
        comm_info = ("backward_joint_{}_{}@fl_ps".format(2, 1))
        block._insert_op(
            idx,
            type='send_and_recv',
            inputs={'X': self.partB_to_partA_grad},
            outputs={'Out': []},
            attrs={
                'mode': 'backward',
                'send_var_name':
                self.partB_to_partA_grad_name + ["microbatch_id"],
                'recv_var_name': [],
                'message_name': comm_info,
                'next_endpoints':
                get_next_stage_trainers(self.role_maker),  # partA_endpoints
                'previous_endpoints':
                get_previous_stage_trainers(self.role_maker),
                'trainer_id': get_role_id(self.role_maker),  # global id
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })
        return

    def _create_var_for_block(self, vars, block):
        for var in vars:
            if block._find_var_recursive(str(var)):
                continue
            source_var = self.ori_main_block._var_recursive(str(var))
            if isinstance(var, Parameter):
                dest_var = block.create_parameter(
                    name=source_var.name,
                    shape=source_var.shape,
                    dtype=source_var.dtype,
                    type=source_var.type,
                    lod_level=source_var.lod_level,
                    stop_gradient=source_var.stop_gradient,
                    trainable=source_var.trainable,
                    optimize_attr=source_var.optimize_attr,
                    regularizer=source_var.regularizer,
                    error_clip=source_var.error_clip)
            else:
                dest_var = block._clone_variable(source_var, False)
            dest_var.stop_gradient = source_var.stop_gradient
            if hasattr(source_var, 'is_distributed'):
                dest_var.is_distributed = source_var.is_distributed

    def _get_block_by_idx(self, op_list, program, block_idx):
        if block_idx < len(program.blocks):
            new_block = program.block(block_idx)
        else:
            new_block = program._create_block()
        for _, op in enumerate(op_list):
            ap_op = new_block.desc.append_op()
            ap_op.copy_from(op.desc)
            ap_op._set_attr(OP_DEVICE_KEY, op.attr(OP_DEVICE_KEY))
            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
            self._create_var_for_block(vars, new_block)
        new_block._sync_with_cpp()
        return new_block

    def _find_joint_forward_op(self, block, flag):
        op_idx = 0
        for op in block.ops:
            if is_forward_op(op) and op.attr(OP_DEVICE_KEY) == flag:
                return op_idx
            else:
                op_idx += 1
        return op_idx

    def _find_joint_backward_op(self, block, flag):
        op_idx = 0
        for op in block.ops:
            if is_backward_op(op) and op.attr(OP_DEVICE_KEY) == flag:
                return op_idx
            else:
                op_idx += 1
        return op_idx

    def _get_partB_to_partA_grad(self, block, flag):
        op_idx = self._find_joint_backward_op(block, flag)
        op = block.ops[op_idx]
        vars1 = op.desc.input_arg_names()
        op_idx = self._find_joint_forward_op(block, flag)
        op = block.ops[op_idx]
        vars2 = op.desc.output_arg_names()
        self.partB_to_partA_grad_name = list(set(vars1) - set(vars2))
        self.partB_to_partA_grad = []
        for var_name in self.partB_to_partA_grad_name:
            self.partB_to_partA_grad.append(self.ori_main_block.var(var_name))

    def _find_dense_grad_vars(self, bp_op_list):
        program = self.ori_main_program
1365 1366 1367 1368
        bp_op_input, bp_op_output = find_ops_list_input_output(
            program, bp_op_list)
        return (screen_persistables(program, bp_op_input) +
                screen_persistables(program, bp_op_output))
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

    def _get_partA_program(self, block):
        # 1. create block 0
        # 1.1 insert send op
        op_idx = self._find_joint_forward_op(block,
                                             self.PART_A_JOINT_OP_DEVICE_FlAG)
        op_list = []
        for i in range(len(block.ops)):
            op = block.ops[i]
            op_list.append(op)
            if i == op_idx:
                out_name = op.desc.output_arg_names()[0]
                self.partA_to_partB_tensor_name = op.desc.output_arg_names()
                self.partA_to_partB_tensor = self.ori_main_block.var(out_name)
                break
        first_block = self._get_block_by_idx(op_list, self.partA_program, 0)
        self._insert_partA_communicate_op(first_block, op_idx + 1)
        # logger.info('partA-first_block:{}'.format(first_block))

        # 2. create block 1
        bp_op_list = get_bp_op_list(block)
        push_sparse_op_list = get_distributed_push_sparse_op_list(block)
        # logger.info('bp_op_list: {}'.format(bp_op_list))
        second_block = self._get_block_by_idx(bp_op_list + push_sparse_op_list,
                                              self.partA_program, 1)
1394
        # 2.1. insert partA recv op
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        block_input_flag = "backward_joint_{}_{}@fl_ps".format(2, 1)
        grad_to_block_id = block_input_flag + ":" + str(second_block.idx)
        attrs = {
            "message_to_block_id": [grad_to_block_id],
            "optimize_blocks": [second_block],
            "endpoint": get_trainer_endpoint(self.role_maker),  ##
            "fanin": 0,
            "pserver_id": get_role_id(self.role_maker),
            "distributed_mode": self.ps_mode,
            "rpc_exec_thread_num": int(os.getenv("CPU_NUM", 32)),
            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
        }
1407 1408 1409 1410 1411
        second_block._insert_op(index=0,
                                type='heter_listen_and_serv',
                                inputs={'X': []},
                                outputs={},
                                attrs=attrs)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        # 2.2 insert push dense grad op
        send_ops = find_send_op(self.ori_main_program)  # push dense
        delete_same_ops(block, send_ops)
        dense_grad_vars = self._find_dense_grad_vars(bp_op_list)
        add_send_op(self.ori_main_program, second_block, dense_grad_vars)
        # logger.info('partA-second_block:{}'.format(second_block))

    def _get_partB_program(self, block):
        op_idx1 = self._find_joint_forward_op(
            block, self.PART_B_JOINT_OP_DEVICE_FlAG)  # elementwise_add op
        op_idx2 = self._find_joint_backward_op(block,
                                               self.PART_B_JOINT_OP_DEVICE_FlAG)
        op_cnt = 0
        op_list1 = []
        op_list2 = []
        op_list3 = []
        for op in block.ops:
            if op_cnt < op_idx1:
                op_list1.append(op)
            elif op_cnt <= op_idx2:
                op_list2.append(op)
            else:
                op_list3.append(op)
            op_cnt += 1

1437
        # 1. create block 0
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        first_block = self._get_block_by_idx(op_list1, self.partB_program, 0)

        # 2. create block 1
        second_block = self._get_block_by_idx(op_list2, self.partB_program, 1)
        # 2.1 insert send op
        self._insert_partB_communicate_op(second_block, len(op_list2))
        # 2.2 insert remain ops
        second_block = self._get_block_by_idx(op_list3, self.partB_program, 1)
        # 2.3 insert push dense grad op
        bp_op_list = get_bp_op_list(second_block)
        dense_grad_vars = self._find_dense_grad_vars(bp_op_list)
        add_send_op(self.ori_main_program, second_block, dense_grad_vars)

        # 3. insert partB recv op
        block_input_flag = "forward_joint_{}_{}@fl_ps".format(1, 2)
        grad_to_block_id = block_input_flag + ":" + str(second_block.idx)
        attrs = {
            "message_to_block_id": [grad_to_block_id],
            "optimize_blocks": [second_block],  ## what to do?
            "endpoint": get_heter_worker_endpoint(self.role_maker),
            "fanin": len(get_previous_stage_trainers(self.role_maker)),
            "pserver_id": 1,  # TODO
            "distributed_mode": self.ps_mode,
            "rpc_exec_thread_num": int(os.getenv("CPU_NUM", 32)),
            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
        }
1464 1465 1466 1467 1468
        first_block._insert_op(index=len(op_list1),
                               type="heter_listen_and_serv",
                               inputs={'X': []},
                               outputs={},
                               attrs=attrs)
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

        #logger.info('partB-first_block:{}'.format(first_block))
        #logger.info('partB-second_block:{}'.format(second_block))

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        self.role_maker = attrs['role_maker']
        self.ps_mode = attrs['ps_mode']
        self.is_part_b = attrs['is_heter_worker']  # TODO
        self.ori_main_program = main_program
        self.ori_main_block = main_program.block(0)

        party_program_map = self._split_fl_program()

        prog_a = party_program_map['a']
        _main_file = ps_log_root_dir + '6_fl_A_main_program.prototxt'
        debug_program(_main_file, prog_a)
        self._get_partB_to_partA_grad(prog_a.global_block(),
                                      self.PART_A_JOINT_OP_DEVICE_FlAG)

        prog_b = party_program_map['b']
        _main_file = ps_log_root_dir + '6_fl_B_main_program.prototxt'
        debug_program(_main_file, prog_b)

        if not self.is_part_b:
            self.partA_program = framework.Program()
            self._get_partA_program(prog_a.global_block())
            pass_ctx._attrs['part_a_main_program'] = self.partA_program
            self._clear_op_device_flag(self.partA_program)
            check_program(self.partA_program)
        else:
            self.partB_program = framework.Program()
            self._get_partB_program(prog_b.global_block())
            pass_ctx._attrs['part_b_main_program'] = self.partB_program
            self._clear_op_device_flag(self.partB_program)
            check_program(self.partB_program)