dataprovider.py 2.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *

UNK_IDX = 2
START = "<s>"
END = "<e>"


def hook(settings, src_dict, trg_dict, file_list, **kwargs):
    # job_mode = 1: training mode
    # job_mode = 0: generating mode
    settings.job_mode = trg_dict is not None
    settings.src_dict = src_dict
    settings.logger.info("src dict len : %d" % (len(settings.src_dict)))
    settings.sample_count = 0

    if settings.job_mode:
        settings.trg_dict = trg_dict
        settings.slots = [
33 34 35
            integer_value_sequence(len(settings.src_dict)), 
            integer_value_sequence(len(settings.trg_dict)), 
            integer_value_sequence(len(settings.trg_dict))
Z
zhangjinchao01 已提交
36 37 38 39
        ]
        settings.logger.info("trg dict len : %d" % (len(settings.trg_dict)))
    else:
        settings.slots = [
40 41
            integer_value_sequence(len(settings.src_dict)), 
            integer_value_sequence(len(open(file_list[0], "r").readlines()))
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        ]


def _get_ids(s, dictionary):
    words = s.strip().split()
    return [dictionary[START]] + \
           [dictionary.get(w, UNK_IDX) for w in words] + \
           [dictionary[END]]


@provider(init_hook=hook, pool_size=50000)
def process(settings, file_name):
    with open(file_name, 'r') as f:
        for line_count, line in enumerate(f):
            line_split = line.strip().split('\t')
            if settings.job_mode and len(line_split) != 2:
                continue
            src_seq = line_split[0]  # one source sequence
            src_ids = _get_ids(src_seq, settings.src_dict)

            if settings.job_mode:
                trg_seq = line_split[1]  # one target sequence
                trg_words = trg_seq.split()
                trg_ids = [settings.trg_dict.get(w, UNK_IDX)
                           for w in trg_words]

                # remove sequence whose length > 80 in training mode
                if len(src_ids) > 80 or len(trg_ids) > 80:
                    continue
                trg_ids_next = trg_ids + [settings.trg_dict[END]]
                trg_ids = [settings.trg_dict[START]] + trg_ids
                yield src_ids, trg_ids, trg_ids_next
            else:
                yield src_ids, [line_count]