gru_gpu_kernel.h 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <type_traits>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/gru_compute.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/platform/device_context.h"
G
guosheng 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {
namespace detail {

/*
G
guosheng 已提交
28 29
 * threads(frame_per_block, batch_per_block)
 * grid(frame_blocks, batch_blocks)
G
guosheng 已提交
30
 */
G
guosheng 已提交
31 32 33 34 35
template <class OpResetOutput, bool is_batch, typename T>
__global__ void KeGruForwardResetOutput(OpResetOutput op_reset_output,
                                        T *gate_value, T *reset_output_value,
                                        T *prev_output_value, int frame_size,
                                        int batch_size,
36
                                        ActivationType active_gate) {
37
  const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x;
G
guosheng 已提交
38 39 40 41
  if (frame_idx >= frame_size) return;

  int batch_idx = 0;
  if (is_batch) {
42
    batch_idx = blockIdx.y * blockDim.y + threadIdx.y;
G
guosheng 已提交
43 44 45
    if (batch_idx >= batch_size) return;
    gate_value += batch_idx * 3 * frame_size;
    reset_output_value += batch_idx * frame_size;
G
guosheng 已提交
46 47
  }

G
guosheng 已提交
48 49 50 51
  T r_prev_out = 0;
  T r_value_reset_output;
  T r_value_update_gate = gate_value[frame_idx + frame_size * 0];
  T r_value_reset_gate = gate_value[frame_idx + frame_size * 1];
G
guosheng 已提交
52

G
guosheng 已提交
53 54 55
  if (prev_output_value) {
    if (is_batch) prev_output_value += batch_idx * frame_size;
    r_prev_out = prev_output_value[frame_idx];
G
guosheng 已提交
56 57
  }

58 59
  op_reset_output(&r_value_update_gate, &r_value_reset_gate, &r_prev_out,
                  &r_value_reset_output, active_gate);
G
guosheng 已提交
60

G
guosheng 已提交
61 62 63
  gate_value[frame_idx + frame_size * 0] = r_value_update_gate;
  gate_value[frame_idx + frame_size * 1] = r_value_reset_gate;
  reset_output_value[frame_idx] = r_value_reset_output;
G
guosheng 已提交
64 65 66
}

/*
G
guosheng 已提交
67 68
 * threads(frame_per_block, batch_per_block)
 * grid(frame_blocks, batch_blocks)
G
guosheng 已提交
69
 */
G
guosheng 已提交
70 71 72 73 74
template <class OpFinalOutput, bool is_batch, typename T>
__global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output,
                                        T *gate_value, T *prev_output_value,
                                        T *output_value, int frame_size,
                                        int batch_size,
Q
Qiao Longfei 已提交
75 76
                                        ActivationType active_node,
                                        bool origin_mode) {
77
  const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x;
G
guosheng 已提交
78 79 80
  if (frame_idx >= frame_size) return;
  int batch_idx = 0;
  if (is_batch) {
81
    batch_idx = blockIdx.y * blockDim.y + threadIdx.y;
G
guosheng 已提交
82 83 84
    if (batch_idx >= batch_size) return;
    gate_value += batch_idx * 3 * frame_size;
    output_value += batch_idx * frame_size;
G
guosheng 已提交
85 86
  }

G
guosheng 已提交
87 88 89 90
  T r_output;
  T r_prev_out = 0;
  T r_value_update_gate = gate_value[frame_idx + frame_size * 0];
  T r_value_frame_state = gate_value[frame_idx + frame_size * 2];
G
guosheng 已提交
91

G
guosheng 已提交
92 93 94
  if (prev_output_value) {
    if (is_batch) prev_output_value += batch_idx * frame_size;
    r_prev_out = prev_output_value[frame_idx];
G
guosheng 已提交
95 96
  }

97
  op_final_output(&r_value_update_gate, &r_value_frame_state, &r_prev_out,
Q
Qiao Longfei 已提交
98
                  &r_output, active_node, origin_mode);
G
guosheng 已提交
99

G
guosheng 已提交
100 101
  gate_value[frame_idx + frame_size * 2] = r_value_frame_state;
  output_value[frame_idx] = r_output;
G
guosheng 已提交
102 103 104
}

/*
G
guosheng 已提交
105 106
 * threads(frame_per_block, batch_per_block)
 * grid(frame_blocks, batch_blocks)
G
guosheng 已提交
107
 */
G
guosheng 已提交
108 109 110 111 112
template <class OpStateGrad, bool is_batch, typename T>
__global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value,
                                       T *gate_grad, T *prev_out_value,
                                       T *prev_out_grad, T *output_grad,
                                       int frame_size, int batch_size,
113
                                       ActivationType active_node) {
114
  const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x;
G
guosheng 已提交
115 116 117
  if (frame_idx >= frame_size) return;
  int batch_idx = 0;
  if (is_batch) {
118
    batch_idx = blockIdx.y * blockDim.y + threadIdx.y;
G
guosheng 已提交
119 120 121 122
    if (batch_idx >= batch_size) return;
    gate_value += batch_idx * 3 * frame_size;
    gate_grad += batch_idx * 3 * frame_size;
    output_grad += batch_idx * frame_size;
G
guosheng 已提交
123 124
  }

G
guosheng 已提交
125 126 127 128 129 130 131
  T r_update_gate_grad;
  T r_frame_state_grad;
  T r_prev_out_value = 0;
  T r_prev_out_grad = 0;
  T r_update_gate_value = gate_value[frame_idx + frame_size * 0];
  T r_frame_state_value = gate_value[frame_idx + frame_size * 2];
  T r_out_grad = output_grad[frame_idx];
G
guosheng 已提交
132

G
guosheng 已提交
133 134 135
  if (prev_out_value && prev_out_grad) {
    if (is_batch) prev_out_value += batch_idx * frame_size;
    r_prev_out_value = prev_out_value[frame_idx];
G
guosheng 已提交
136

G
guosheng 已提交
137 138
    if (is_batch) prev_out_grad += batch_idx * frame_size;
    r_prev_out_grad = prev_out_grad[frame_idx];
G
guosheng 已提交
139 140
  }

141 142 143
  op_state_grad(&r_update_gate_value, &r_update_gate_grad, &r_frame_state_value,
                &r_frame_state_grad, &r_prev_out_value, &r_prev_out_grad,
                &r_out_grad, active_node);
G
guosheng 已提交
144

G
guosheng 已提交
145 146 147 148
  gate_grad[frame_idx + frame_size * 0] = r_update_gate_grad;
  gate_grad[frame_idx + frame_size * 2] = r_frame_state_grad;
  if (prev_out_grad) {
    prev_out_grad[frame_idx] = r_prev_out_grad;
G
guosheng 已提交
149 150 151 152
  }
}

/*
G
guosheng 已提交
153 154
 * threads(frame_per_block, batch_per_block)
 * grid(frame_blocks, batch_blocks)
G
guosheng 已提交
155
 */
G
guosheng 已提交
156 157 158 159 160
template <class OpResetGrad, bool is_batch, typename T>
__global__ void KeGruBackwardResetGrad(OpResetGrad op_reset_grad, T *gate_value,
                                       T *gate_grad, T *prev_out_value,
                                       T *prev_out_grad, T *reset_output_grad,
                                       int frame_size, int batch_size,
161
                                       ActivationType active_gate) {
162
  const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x;
G
guosheng 已提交
163 164 165
  if (frame_idx >= frame_size) return;
  int batch_idx = 0;
  if (is_batch) {
166
    batch_idx = blockIdx.y * blockDim.y + threadIdx.y;
G
guosheng 已提交
167 168 169 170
    if (batch_idx >= batch_size) return;
    gate_value += batch_idx * 3 * frame_size;
    gate_grad += batch_idx * 3 * frame_size;
    reset_output_grad += batch_idx * frame_size;
G
guosheng 已提交
171 172
  }

G
guosheng 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186
  T r_reset_gate_grad;
  T r_prev_out_value = 0;
  T r_prev_out_grad = 0;
  T r_reset_output_grad = 0;
  T r_update_gate_value = gate_value[frame_idx + frame_size * 0];
  T r_update_gate_grad = gate_grad[frame_idx + frame_size * 0];
  T r_reset_gate_value = gate_value[frame_idx + frame_size * 1];

  if (prev_out_value && prev_out_grad) {
    if (is_batch) prev_out_value += batch_idx * frame_size;
    if (is_batch) prev_out_grad += batch_idx * frame_size;
    r_prev_out_value = prev_out_value[frame_idx];
    r_prev_out_grad = prev_out_grad[frame_idx];
    r_reset_output_grad = reset_output_grad[frame_idx];
G
guosheng 已提交
187 188
  }

189 190 191
  op_reset_grad(&r_update_gate_value, &r_update_gate_grad, &r_reset_gate_value,
                &r_reset_gate_grad, &r_prev_out_value, &r_prev_out_grad,
                &r_reset_output_grad, active_gate);
G
guosheng 已提交
192

G
guosheng 已提交
193 194 195 196
  gate_grad[frame_idx + frame_size * 0] = r_update_gate_grad;
  gate_grad[frame_idx + frame_size * 1] = r_reset_gate_grad;
  if (prev_out_grad) {
    prev_out_grad[frame_idx] = r_prev_out_grad;
G
guosheng 已提交
197 198 199 200 201 202
  }
}
}  // namespace detail
}  // namespace math
}  // namespace operators
}  // namespace paddle