device_context.cc 14.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

Q
qijun 已提交
24 25 26
namespace paddle {
namespace platform {

D
dzhwinter 已提交
27 28
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
29
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
30 31 32
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
M
minqiyang 已提交
33 34 35
        "Place %s is not supported, Please re-compile with WITH_GPU "
        "option",
        place);
D
dzhwinter 已提交
36
  }
37
  return it->second.get().get();
D
dzhwinter 已提交
38 39
}

40 41 42 43 44 45 46 47 48 49 50
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
51 52
}

D
dzhwinter 已提交
53 54 55
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
56
  std::set<Place> set;
Y
Yu Yang 已提交
57 58 59 60 61
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
62
#ifdef PADDLE_WITH_MKLDNN
63
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
64
#else
65
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
66
#endif
Y
Yu Yang 已提交
67
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
68
#ifdef PADDLE_WITH_CUDA
69
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
70 71
#else
      PADDLE_THROW(
D
dzhwinter 已提交
72
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
73
          "option");
C
chengduoZH 已提交
74 75 76
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
77 78
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
79 80 81 82
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
83 84 85 86 87
#endif
    }
  }
}

88 89 90 91 92 93 94
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;

#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place, const cudaStream_t& stream) {
  PADDLE_ENFORCE(platform::is_gpu_place(place));
  auto place_stream = std::make_pair(place, stream);
95 96 97 98 99 100 101 102 103 104 105 106
  std::unique_lock<std::mutex> lock(mtx_);
  auto it = device_allocator_.find(place_stream);
  if (it == device_allocator_.end()) {
    auto tmp_allocator = new TemporaryAllocator(place);
    tmp_allocator->SetCallback([stream]() {
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      PADDLE_ENFORCE(cudaGetLastError());
    });
    device_allocator_[place_stream].reset(tmp_allocator);
    return *tmp_allocator;
  } else {
    return *it->second;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  }
}

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CUDADeviceContext& dev_ctx) {
  return Get(dev_ctx.GetPlace(), dev_ctx.stream());
}
#endif

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CPUDeviceContext& dev_ctx) {
  return cpu_allocator_;
}

platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
  return cpu_allocator_;
}

129 130 131 132
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
133
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
134 135 136 137 138 139 140
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
141
Place CPUDeviceContext::GetPlace() const { return place_; }
142

143
#ifdef PADDLE_WITH_CUDA
144

Q
init  
qijun 已提交
145 146 147 148 149 150 151
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
152
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
153 154 155 156 157 158 159 160 161 162 163 164
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
165 166 167
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
Y
Yu Yang 已提交
168 169
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
170
    void* retv = buf->ptr();
S
sneaxiy 已提交
171 172 173 174
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
175
    return retv;
Q
init  
qijun 已提交
176 177
  }

S
sneaxiy 已提交
178 179 180 181 182 183
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
204
  CUDAPlace place_;
Q
init  
qijun 已提交
205 206
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
207
  mutable void* scratch_;
Q
init  
qijun 已提交
208
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
209
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
210
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
211 212
};

S
sneaxiy 已提交
213
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
214
    : workspace_(nullptr), stream_(stream), place_(place) {
S
sneaxiy 已提交
215 216 217
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
218

S
sneaxiy 已提交
219 220
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
221
}
222

S
sneaxiy 已提交
223
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
224
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
225
    return;
Y
Yu Yang 已提交
226
  }
S
sneaxiy 已提交
227 228 229
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
230
    workspace_.reset();
231
  }
Y
Yu Yang 已提交
232 233
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                     paddle::memory::Allocator::kScratchpad);
S
sneaxiy 已提交
234
}
235

236 237
std::once_flag CUDADeviceContext::init_cudnn_;

238 239
CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
240
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
241 242 243
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
244 245 246
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
247
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
248 249 250 251 252 253 254 255 256
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }

C
chengduo 已提交
257 258 259
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

260 261
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
262
                          << ", Driver API Version: " << driver_version_ / 1000
263
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
264 265 266
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
267 268 269 270
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
                          << (cudnn_dso_ver % 100) / 10 << ".";
S
sneaxiy 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

  {
    // Check CUDA/CUDNN version compatiblity
    auto local_cuda_version = runtime_version_ / 100;
    auto compile_cuda_version = CUDA_VERSION / 100;
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
291
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
S
sneaxiy 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
    }
  }

S
sneaxiy 已提交
305
  callback_manager_.reset(new StreamCallbackManager(stream_));
306 307 308 309
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
310
  Wait();
S
sneaxiy 已提交
311
  WaitStreamCallback();
312 313
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
314 315
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
316
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
Q
qingqing01 已提交
317
#if !defined(_WIN32)
Q
qingqing01 已提交
318
  PADDLE_ENFORCE(dynload::ncclCommDestroy(nccl_comm_));
Q
qingqing01 已提交
319
#endif
320 321
}

L
liaogang 已提交
322
Place CUDADeviceContext::GetPlace() const { return place_; }
323

L
liaogang 已提交
324
void CUDADeviceContext::Wait() const {
325 326
  auto& allocator =
      DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
327
  allocator.Release([this]() {
328 329 330
    PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
    PADDLE_ENFORCE(cudaGetLastError());
  });
331 332
}

K
Kexin Zhao 已提交
333
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
334
  return compute_capability_;
K
Kexin Zhao 已提交
335 336
}

337
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
338
  return multi_process_ * max_threads_per_mp_;
339 340
}

341 342 343 344
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

345 346
bool CUDADeviceContext::tensor_core_available() const {
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
347 348
}

349 350 351 352 353 354 355 356 357
CudnnHolder* CUDADeviceContext::cudnn_holder() const {
  std::call_once(init_cudnn_, [&]() {
    if (dynload::HasCUDNN()) {
      cudnn_holder_.reset(new CudnnHolder(&stream_, place_));
    }
  });
  return cudnn_holder_.get();
}

358
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
359
  return cudnn_holder()->cudnn_handle();
360 361
}

S
sneaxiy 已提交
362
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
363
  return CudnnWorkspaceHandle(cudnn_holder());
364
}
365

366
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
367

C
chengduoZH 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
382
#endif
Q
qijun 已提交
383

T
tensor-tang 已提交
384 385
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
386 387 388
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
389 390
}

S
Sylwester Fraczek 已提交
391 392 393 394 395 396 397 398
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

399 400
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
401 402 403 404
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
405

406
  std::lock_guard<std::mutex> lock(*p_mutex_);
T
tensor-tang 已提交
407

408 409 410 411 412 413 414
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
415
  } else {
416
    pBlob = map_it->second;
417
  }
T
tensor-tang 已提交
418

419 420 421 422 423 424 425 426 427 428
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
429
  return;
T
tensor-tang 已提交
430 431
}

432 433
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
434 435
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
436

437
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
438

439
  std::lock_guard<std::mutex> lock(*p_mutex_);
440 441 442 443 444 445 446 447 448 449

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
450

451 452
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
453 454 455 456
}

#endif

Q
qijun 已提交
457
}  // namespace platform
Q
qijun 已提交
458
}  // namespace paddle