test_imperative_resnet.py 13.1 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.layer_helper import LayerHelper
M
minqiyang 已提交
24 25 26 27 28
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope

29
batch_size = 8
M
minqiyang 已提交
30 31 32 33 34 35
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
M
minqiyang 已提交
36
        "batch_size": batch_size,
M
minqiyang 已提交
37 38
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
M
minqiyang 已提交
39
    },
M
minqiyang 已提交
40
    "batch_size": batch_size,
M
minqiyang 已提交
41 42
    "lr": 0.1,
    "total_images": 1281164,
M
minqiyang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
}


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
60
        optimizer = fluid.optimizer.SGD(learning_rate=0.01)
M
minqiyang 已提交
61
        # TODO(minqiyang): Add learning rate scheduler support to imperative mode
M
minqiyang 已提交
62 63 64 65 66 67
        #  optimizer = fluid.optimizer.Momentum(
    #  learning_rate=params["lr"],
    #  learning_rate=fluid.layers.piecewise_decay(
    #  boundaries=bd, values=lr),
    #  momentum=0.9,
    #  regularization=fluid.regularizer.L2Decay(1e-4))
M
minqiyang 已提交
68 69 70 71 72

    return optimizer


class ConvBNLayer(fluid.imperative.Layer):
M
minqiyang 已提交
73 74 75 76 77 78 79
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
M
minqiyang 已提交
80 81 82
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
M
minqiyang 已提交
83 84 85 86 87
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
M
minqiyang 已提交
88 89 90 91
            groups=groups,
            act=None,
            bias_attr=None)

92
        self._batch_norm = BatchNorm(num_filters, act=act)
M
minqiyang 已提交
93 94 95

    def forward(self, inputs):
        y = self._conv(inputs)
96
        y = self._batch_norm(y)
M
minqiyang 已提交
97 98 99 100 101

        return y


class BottleneckBlock(fluid.imperative.Layer):
M
minqiyang 已提交
102
    def __init__(self, num_channels, num_filters, stride, shortcut=True):
M
minqiyang 已提交
103 104 105
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
M
minqiyang 已提交
106 107 108 109
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
M
minqiyang 已提交
110
        self.conv1 = ConvBNLayer(
M
minqiyang 已提交
111 112 113 114 115
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
M
minqiyang 已提交
116
        self.conv2 = ConvBNLayer(
M
minqiyang 已提交
117 118 119 120
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)
M
minqiyang 已提交
121

M
minqiyang 已提交
122
        if not shortcut:
M
minqiyang 已提交
123
            self.short = ConvBNLayer(
M
minqiyang 已提交
124 125 126 127
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)
M
minqiyang 已提交
128 129 130

        self.shortcut = shortcut

M
minqiyang 已提交
131 132
        self._num_channels_out = num_filters * 4

M
minqiyang 已提交
133
    def forward(self, inputs):
M
minqiyang 已提交
134 135 136
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
M
minqiyang 已提交
137 138

        if self.shortcut:
M
minqiyang 已提交
139 140 141
            short = inputs
        else:
            short = self.short(inputs)
M
minqiyang 已提交
142

M
minqiyang 已提交
143 144 145
        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper('elementwise_add_activation', act='relu')
M
minqiyang 已提交
146
        return layer_helper.append_activation(y)
M
minqiyang 已提交
147 148 149


class ResNet(fluid.imperative.Layer):
M
minqiyang 已提交
150
    def __init__(self, layers=50, class_dim=102):
M
minqiyang 已提交
151 152
        super(ResNet, self).__init__()

M
minqiyang 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166
        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
M
minqiyang 已提交
167
            num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
M
minqiyang 已提交
168 169 170 171
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.bottleneck_block_list = []
M
minqiyang 已提交
172
        num_channels = 64
M
minqiyang 已提交
173
        for block in range(len(depth)):
M
minqiyang 已提交
174
            shortcut = False
M
minqiyang 已提交
175 176
            for i in range(depth[block]):
                bottleneck_block = BottleneckBlock(
M
minqiyang 已提交
177
                    num_channels=num_channels,
M
minqiyang 已提交
178 179 180
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    shortcut=shortcut)
M
minqiyang 已提交
181
                num_channels = bottleneck_block._num_channels_out
M
minqiyang 已提交
182
                self.bottleneck_block_list.append(bottleneck_block)
M
minqiyang 已提交
183
                shortcut = True
M
minqiyang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = FC(size=class_dim,
                      act='softmax',
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
M
minqiyang 已提交
202
        y = self.out(y)
M
minqiyang 已提交
203 204 205 206
        return y


class TestImperativeResnet(unittest.TestCase):
M
minqiyang 已提交
207
    def test_resnet_float32(self):
M
minqiyang 已提交
208 209
        seed = 90

210
        batch_size = train_parameters["batch_size"]
M
minqiyang 已提交
211
        batch_num = 1
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            resnet = ResNet()
            optimizer = optimizer_setting(train_parameters)
            np.random.seed(seed)
            import random
            random.seed = seed
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)

            dy_param_init_value = {}
            for param in fluid.default_main_program().global_block(
            ).all_parameters():
                dy_param_init_value[param.name] = param._numpy()

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
231
                if batch_id >= batch_num:
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
                    break

                dy_x_data = np.array(
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    batch_size, 1)

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label._stop_gradient = True

                out = resnet(img)
                loss = fluid.layers.cross_entropy(input=out, label=label)
                avg_loss = fluid.layers.mean(x=loss)

                dy_out = avg_loss._numpy()

                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        if param.name not in dy_param_init_value:
                            dy_param_init_value[param.name] = param._numpy()

                avg_loss._backward()

                dy_grad_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    if not param.stop_gradient:
                        np_array = np.array(param._ivar._grad_ivar().value()
                                            .get_tensor())
                        dy_grad_value[param.name + core.grad_var_suffix(
                        )] = np_array

                optimizer.minimize(avg_loss)

                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
272 273

        with new_program_scope():
M
minqiyang 已提交
274 275 276
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
277 278
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
279 280 281

            resnet = ResNet()
            optimizer = optimizer_setting(train_parameters)
M
minqiyang 已提交
282 283 284 285

            np.random.seed(seed)
            import random
            random.seed = seed
286
            train_reader = paddle.batch(
M
minqiyang 已提交
287 288
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)
289 290 291 292 293 294 295 296 297 298 299 300

            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = resnet(img)
            loss = fluid.layers.cross_entropy(input=out, label=label)
            avg_loss = fluid.layers.mean(x=loss)
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
301
            static_grad_name_list = []
302 303 304
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)
M
minqiyang 已提交
305 306 307 308 309
            for param in fluid.default_main_program().global_block(
            ).all_parameters():
                if not param.stop_gradient:
                    static_grad_name_list.append(param.name +
                                                 core.grad_var_suffix())
310 311 312 313 314 315 316 317

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
318
                if batch_id >= batch_num:
319 320
                    break

M
minqiyang 已提交
321
                static_x_data = np.array(
322 323 324 325
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [batch_size, 1])

M
minqiyang 已提交
326
                fetch_list = [avg_loss.name]
327
                fetch_list.extend(static_param_name_list)
M
minqiyang 已提交
328
                fetch_list.extend(static_grad_name_list)
329
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
330
                              feed={"pixel": static_x_data,
331 332 333 334
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
M
minqiyang 已提交
335
                static_grad_value = {}
336
                static_out = out[0]
M
minqiyang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
                param_start_pos = 1
                grad_start_pos = len(static_param_name_list) + param_start_pos
                for i in range(param_start_pos,
                               len(static_param_name_list) + param_start_pos):
                    static_param_value[static_param_name_list[
                        i - param_start_pos]] = out[i]
                for i in range(grad_start_pos,
                               len(static_grad_name_list) + grad_start_pos):
                    static_grad_value[static_grad_name_list[
                        i - grad_start_pos]] = out[i]

        self.assertTrue(np.allclose(static_out, dy_out))

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
353 354
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
355

M
minqiyang 已提交
356
        self.assertEqual(len(dy_grad_value), len(static_grad_value))
M
minqiyang 已提交
357
        for key, value in six.iteritems(static_grad_value):
358 359 360
            self.assertTrue(np.allclose(value, dy_grad_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
361

M
minqiyang 已提交
362
        self.assertEqual(len(dy_param_value), len(static_param_value))
M
minqiyang 已提交
363
        for key, value in six.iteritems(static_param_value):
364 365 366
            self.assertTrue(np.allclose(value, dy_param_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
M
minqiyang 已提交
367 368 369 370


if __name__ == '__main__':
    unittest.main()