momentum_op.cc 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sidgoyal78 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/momentum_op.h"
S
sidgoyal78 已提交
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20 21
using Tensor = framework::Tensor;

S
sidgoyal78 已提交
22 23 24 25 26
class MomentumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
27
  void InferShape(framework::InferShapeContext* ctx) const override {
S
sidgoyal78 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(param) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(grad) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Velocity"),
                   "Input(velocity) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of Momentum should not be null.");
36 37 38 39 40
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
S
sidgoyal78 已提交
41 42 43 44 45 46 47

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"),
                   "Output(VelocityOut) of Momentum should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
48 49 50 51 52 53 54 55 56
    if (ctx->GetInputsVarType("Grad")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(
          param_dim, ctx->GetInputDim("Grad"),
          "Param and Grad input of MomentumOp should have the same dimension.");
      PADDLE_ENFORCE_EQ(
          param_dim, ctx->GetInputDim("Velocity"),
          "Param and Velocity of MomentumOp should have the same dimension.");
    }
S
sidgoyal78 已提交
57 58 59 60 61 62
    PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1,
                      "Learning_rate should be a scalar");

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("VelocityOut", param_dim);
  }
D
dzhwinter 已提交
63
  framework::OpKernelType GetExpectedKernelType(
64 65
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("Param"));
D
dzhwinter 已提交
66 67
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
S
sidgoyal78 已提交
68 69
};

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
class MomentumOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto input_var = op_desc.Input("Param")[0];
    for (auto& out_var : op_desc.Output("ParamOut")) {
      if (block->FindRecursiveOrCreateVar(input_var).GetType() ==
          framework::proto::VarType::SELECTED_ROWS) {
        block->FindRecursiveOrCreateVar(out_var).SetType(
            framework::proto::VarType::SELECTED_ROWS);
      } else if (block->FindRecursiveOrCreateVar(input_var).GetType() ==
                 framework::proto::VarType::LOD_TENSOR) {
        block->FindRecursiveOrCreateVar(out_var).SetType(
            framework::proto::VarType::LOD_TENSOR);
      } else {
        PADDLE_THROW(
            "Only support LodTensor and SelectedRows, Unexpected Input Type.");
      }
    }
  }
};

S
sidgoyal78 已提交
92 93
class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
94
  void Make() override {
S
sidgoyal78 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
             "Input parameter that has to be updated");
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
             "Input gradient of the parameter");
    AddInput("Velocity",
             "(Tensor, default Tensor<float>) "
             "Input velocity (corresponding to the parameter) "
             "that has to be updated");
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
             "Input learning rate");

D
dangqingqing 已提交
109 110 111 112 113 114
    AddOutput("ParamOut",
              "(Tensor) This output is updated parameter. "
              "It shared memory with Input(Param).");
    AddOutput("VelocityOut",
              "(Tensor) This output is updated velocity. "
              "It shared memory with Input(Velocity).");
S
sidgoyal78 已提交
115 116

    AddAttr<float>("mu", "(float) Momentum coefficient");
117
    AddAttr<bool>("use_nesterov",
K
kexinzhao 已提交
118 119
                  "(bool, default false) "
                  "Use Nesterov Momentum")
K
kavyasrinet 已提交
120
        .SetDefault(false);
S
sidgoyal78 已提交
121
    AddComment(R"DOC(
K
kexinzhao 已提交
122 123 124 125 126 127 128 129
Momentum Optimizer.

This optimizer has a flag for Nestrov Momentum.
The update equations are as follows:

$$
velocity = mu * velocity + gradient \\
if (use\_nesterov):   \\
130
  param = param - (gradient + mu * velocity) * learning\_rate \\
K
kexinzhao 已提交
131 132 133
else:   \\
  param = param - learning\_rate * velocity. \\
$$
S
sidgoyal78 已提交
134 135 136 137 138 139 140 141

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
142 143 144 145 146 147
REGISTER_OPERATOR(momentum, ops::MomentumOp, ops::MomentumOpMaker,
                  paddle::framework::EmptyGradOpMaker,
                  ops::MomentumOpInferVarType);
REGISTER_OP_CPU_KERNEL(
    momentum, ops::MomentumOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MomentumOpKernel<paddle::platform::CPUDeviceContext, double>);