init.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
L
Leo Chen 已提交
15

D
dzhwinter 已提交
16
#include <algorithm>
C
chengduo 已提交
17 18
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
19 20
#include <memory>
#include <set>
D
dzhwinter 已提交
21
#include <stdexcept>
D
dzhwinter 已提交
22 23
#include <string>

Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
26
#include "paddle/fluid/platform/cpu_info.h"
27
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
28
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
29
#include "paddle/fluid/platform/cuda_device_guard.h"
30
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
31
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
33
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/place.h"
35
#include "paddle/fluid/string/piece.h"
36

37 38 39 40 41
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
#include "paddle/fluid/platform/xpu_info.h"
#endif

42
DECLARE_int32(paddle_num_threads);
43 44 45
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
46

47 48 49 50 51 52 53 54 55 56
namespace paddle {
namespace platform {

void ParseCommandLineFlags(int argc, char **argv, bool remove) {
  google::ParseCommandLineFlags(&argc, &argv, remove);
}

}  // namespace platform
}  // namespace paddle

D
dzhwinter 已提交
57 58 59
namespace paddle {
namespace framework {

60 61 62 63
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
64
std::once_flag gflags_init_flag;
65
std::once_flag glog_init_flag;
X
Xin Pan 已提交
66
std::once_flag p2p_init_flag;
D
dzhwinter 已提交
67

68
bool InitGflags(std::vector<std::string> args) {
69
  bool successed = false;
D
dzhwinter 已提交
70
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
71
    FLAGS_logtostderr = true;
L
Leo Chen 已提交
72 73 74 75 76
    // NOTE(zhiqiu): dummy is needed, since the function
    // ParseNewCommandLineFlags in gflags.cc starts processing
    // commandline strings from idx 1.
    // The reason is, it assumes that the first one (idx 0) is
    // the filename of executable file.
77 78
    args.insert(args.begin(), "dummy");
    std::vector<char *> argv;
D
dzhwinter 已提交
79
    std::string line;
80 81 82 83
    int argc = args.size();
    for (auto &arg : args) {
      argv.push_back(const_cast<char *>(arg.data()));
      line += arg;
D
dzhwinter 已提交
84 85
      line += ' ';
    }
L
Leo Chen 已提交
86 87
    VLOG(1) << "Before Parse: argc is " << argc
            << ", Init commandline: " << line;
88 89

    char **arr = argv.data();
D
dzhwinter 已提交
90
    google::ParseCommandLineFlags(&argc, &arr, true);
91
    successed = true;
92 93

    VLOG(1) << "After Parse: argc is " << argc;
D
dzhwinter 已提交
94
  });
95
  return successed;
D
dzhwinter 已提交
96 97
}

98 99 100 101 102 103 104 105
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
G
GaoWei8 已提交
106 107
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]));
108
        if (can_acess != 1) {
L
Leo Chen 已提交
109 110
          VLOG(2) << "Cannot enable P2P access from " << devices[i] << " to "
                  << devices[j];
111
        } else {
Y
Yu Yang 已提交
112
          platform::CUDADeviceGuard guard(devices[i]);
113 114 115 116 117 118 119 120
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

121 122 123 124
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
G
GaoWei8 已提交
125 126 127 128 129 130 131 132 133 134 135 136
#define MULTIPLY_ATTR_VALUE(attr)                                            \
  {                                                                          \
    PADDLE_ENFORCE_EQ(                                                       \
        !platform::dynload::cuptiActivityGetAttribute(attr, &attrValueSize,  \
                                                      &attrValue),           \
        true, platform::errors::Unavailable("Get cupti attribute failed.")); \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;                        \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";                \
    PADDLE_ENFORCE_EQ(                                                       \
        !platform::dynload::cuptiActivitySetAttribute(attr, &attrValueSize,  \
                                                      &attrValue),           \
        true, platform::errors::Unavailable("Set cupti attribute failed.")); \
137 138 139 140 141 142 143 144 145 146
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
147
void InitDevices(bool init_p2p) {
148 149 150
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
151
  /*Init all available devices by default */
152
  std::vector<int> devices;
153
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
154
  try {
155 156
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
157 158
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
159
  }
160 161 162 163 164 165 166 167
#endif
#ifdef PADDLE_WITH_XPU
  try {
    // use user specified XPUs in single-node multi-process mode.
    devices = platform::GetXPUSelectedDevices();
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_XPU, but no XPU found in runtime.";
  }
D
dzhwinter 已提交
168
#endif
169
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
170 171
}

172 173 174 175
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
176 177 178
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
179 180 181
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
182 183

#ifdef PADDLE_WITH_CUDA
184
    places.emplace_back(platform::CUDAPlace(devices[i]));
185 186 187 188
#endif
#ifdef PADDLE_WITH_XPU
    places.emplace_back(platform::XPUPlace(devices[i]));
#endif
189 190 191 192 193
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
194 195 196
#ifdef PADDLE_WITH_CUDA
  places.emplace_back(platform::CUDAPinnedPlace());
#endif
197
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
198

199
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
200
  platform::SetNumThreads(FLAGS_paddle_num_threads);
201
#endif
T
tensor-tang 已提交
202

T
tensor-tang 已提交
203
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
204
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
205 206 207 208
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
209 210

// Throw some informations when CPU instructions mismatch.
211 212 213 214 215 216
#define AVX_GUIDE(compiletime, runtime)                                  \
  PADDLE_THROW(platform::errors::Unavailable(                            \
      "This version is compiled on higher instruction(" #compiletime     \
      ") system, you may encounter illegal instruction error running on" \
      " your local CPU machine. Please reinstall the " #runtime          \
      " version or compile from source code."))
217 218

#ifdef __AVX512F__
T
tensor-tang 已提交
219 220
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
221
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
222
    } else if (platform::MayIUse(platform::avx)) {
223 224 225 226 227
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
228
#endif
229 230

#ifdef __AVX2__
T
tensor-tang 已提交
231 232
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
233 234 235 236
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
237 238
  }
#endif
239 240

#ifdef __AVX__
T
tensor-tang 已提交
241
  if (!platform::MayIUse(platform::avx)) {
242
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
243
  }
244 245
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
246 247

#endif
248 249
}

C
chengduo 已提交
250
#ifndef _WIN32
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
// Description Quoted from
// https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html
const struct {
  const char *name;
  const char *error_string;
} SignalErrorStrings[] = {
    {"SIGSEGV", "Segmentation fault"},
    {"SIGILL", "Illegal instruction"},
    {"SIGFPE", "Erroneous arithmetic operation"},
    {"SIGABRT", "Process abort signal"},
    {"SIGBUS", "Access to an undefined portion of a memory object"},
    {"SIGTERM", "Termination signal"},
};

bool StartsWith(const char *str, const char *prefix) {
  size_t len_prefix = strlen(prefix);
  size_t len_str = strlen(str);
  return len_str < len_prefix ? false : memcmp(prefix, str, len_prefix) == 0;
}

const char *ParseSignalErrorString(const std::string &str) {
  for (size_t i = 0;
       i < (sizeof(SignalErrorStrings) / sizeof(*(SignalErrorStrings))); ++i) {
    if (std::string::npos != str.find(SignalErrorStrings[i].name)) {
      return SignalErrorStrings[i].error_string;
    }
  }
  return "Unknown signal";
}

// Handle SIGSEGV, SIGILL, SIGFPE, SIGABRT, SIGBUS, and SIGTERM.
282
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
283
  try {
284 285
    // NOTE1: The glog FailureSignalHandler dumped messages
    //   are deal with line by line
286
    auto signal_msg_dunmer_ptr = SignalMessageDumper::Instance().Get();
287 288 289
    // NOTE2: we only deal with the time info ane signal info,
    //   the stack trace will generated by paddle self
    if (StartsWith(data, "*** Aborted at")) {
290 291
      *signal_msg_dunmer_ptr << "  [TimeInfo: " << std::string(data, size - 1)
                             << "]\n";
292 293 294 295 296
    } else if (StartsWith(data, "***")) {
      std::string signal_info(data, size - 1);
      std::string useless_substr("; stack trace:");
      size_t start_pos = signal_info.rfind(useless_substr);
      signal_info.replace(start_pos, useless_substr.length(), "");
297
      *signal_msg_dunmer_ptr << "  [SignalInfo: " << signal_info << "]\n";
298 299 300 301 302 303 304
      // NOTE3: Here does not throw an exception,
      // otherwise it will casue "terminate called recursively"
      auto exp = platform::EnforceNotMet(
          platform::errors::Fatal(
              "A serious error (%s) is detected by the operating system.",
              ParseSignalErrorString(signal_info)),
          __FILE__, __LINE__);
305
      std::cout << exp.what() << (*signal_msg_dunmer_ptr).str() << std::endl;
306
    }
C
chengduo 已提交
307
  } catch (...) {
308 309 310
    // Since the program has already triggered a system error,
    // no further processing is required here, glog FailureSignalHandler
    // will Kill program by the default signal handler
C
chengduo 已提交
311 312 313 314
  }
}
#endif

Y
Yang Yu 已提交
315
void InitGLOG(const std::string &prog_name) {
316 317 318 319
  std::call_once(glog_init_flag, [&]() {
    // glog will not hold the ARGV[0] inside.
    // Use strdup to alloc a new string.
    google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
320
#ifndef _WIN32
321 322
    google::InstallFailureSignalHandler();
    google::InstallFailureWriter(&SignalHandle);
C
chengduo 已提交
323
#endif
324
  });
Y
Yang Yu 已提交
325 326
}

D
dzhwinter 已提交
327 328
}  // namespace framework
}  // namespace paddle