elementwise_op_function.h 13.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
20

C
chengduoZH 已提交
21 22 23 24
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif

Y
Yi Wang 已提交
25
#include "paddle/fluid/operators/math/math_function.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

Q
QI JUN 已提交
62
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
63
class RowwiseTransformIterator;
Q
QI JUN 已提交
64
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
65
class MidWiseTransformIterator;
C
chengduoZH 已提交
66 67

template <typename T>
Q
QI JUN 已提交
68
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
69
 public:
C
chengduoZH 已提交
70 71
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
72
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
73
    ++i_;
C
chengduoZH 已提交
74 75 76
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
77 78 79
    return *this;
  }

Q
QI JUN 已提交
80 81
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
82
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
83 84
  }

Q
QI JUN 已提交
85 86
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
87
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
88 89 90 91
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
92
 private:
C
chengduoZH 已提交
93 94
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
95
  int64_t n_;
C
chengduoZH 已提交
96 97 98
};

template <typename T>
Q
QI JUN 已提交
99
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
100
 public:
C
chengduoZH 已提交
101 102 103
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
104
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
105
    ++j_;
C
chengduoZH 已提交
106 107
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
108
      j_ = 0;
C
chengduoZH 已提交
109 110 111
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
112
    }
C
chengduoZH 已提交
113 114 115
    return *this;
  }

Q
QI JUN 已提交
116 117
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
118
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
119 120
  }

Q
QI JUN 已提交
121 122
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
123
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
124 125 126 127
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
128
 private:
C
chengduoZH 已提交
129
  const T* ptr_;
C
refine  
chengduoZH 已提交
130
  int64_t i_;
C
chengduoZH 已提交
131 132
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
133
  int64_t post_;
C
chengduoZH 已提交
134 135
};

C
chengduoZH 已提交
136 137
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
138
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
139
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
140
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
141 142
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
143
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
144
      super_t;
C
chengduoZH 已提交
145
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
146 147 148 149 150 151
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
152
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
153 154 155 156 157
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
158
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
159
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
160
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
161 162
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
163
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
164
      super_t;
C
chengduoZH 已提交
165
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
166 167 168 169 170 171 172
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
173
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
174 175 176 177 178
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

179 180
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
181 182
class TransformFunctor {
 public:
C
chengduoZH 已提交
183
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
184
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
185 186
      : x_(x->data<T>()),
        y_(y->data<T>()),
187
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
188 189 190 191 192
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
193
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
194
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
195 196 197
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
198 199 200
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
201 202 203
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
204 205 206
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
207 208
  }

C
chengduoZH 已提交
209
 private:
C
chengduoZH 已提交
210 211
  const T* x_;
  const T* y_;
212
  OutType* z_;
C
chengduoZH 已提交
213
  int64_t nx_;
Q
QI JUN 已提交
214
  const DeviceContext& ctx_;
C
chengduoZH 已提交
215 216 217
  Functor func_;
};

218 219
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
220
    template <typename DeviceContext, typename T>                              \
221 222 223 224 225 226
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
227 228 229
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
230
    }                                                                          \
Q
QI JUN 已提交
231
    template <typename DeviceContext, typename T>                              \
232 233 234 235 236 237 238 239 240 241
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
242 243 244
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
245
    }                                                                          \
Q
QI JUN 已提交
246
    template <typename DeviceContext, typename T>                              \
247 248 249 250 251 252 253 254 255 256 257
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
258 259 260
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
261 262 263
    }                                                                          \
  }

Q
QI JUN 已提交
264
template <class functor, typename DeviceContext, typename T>
265 266 267 268 269 270 271 272 273 274 275
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
276
                    "Rank of first input must >= rank of second input.");
277

Q
qijun 已提交
278
  if (x_dims == y_dims) {
279
    functor f;
Q
QI JUN 已提交
280
    f.template Run<DeviceContext, T>(x, y, z, ctx);
281 282 283 284 285 286 287 288 289 290 291 292
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
Q
QI JUN 已提交
293
    f.template RunBroadCast<DeviceContext, T>(x, y, z, ctx, pre, n);
294 295 296
    return;
  } else {
    functor f;
Q
QI JUN 已提交
297
    f.template RunBroadCast2<DeviceContext, T>(x, y, z, ctx, pre, n, post);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Q
QI JUN 已提交
314
template <typename DeviceContext, typename T, typename functor,
F
fengjiayi 已提交
315
          typename broadcastfunctor, typename broadcast2functor>
C
chengduoZH 已提交
316 317 318 319 320 321
void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
                            const framework::Tensor* x,
                            const framework::Tensor* y,
                            const framework::Tensor* out,
                            const framework::Tensor* dout, int axis,
                            framework::Tensor* dx, framework::Tensor* dy) {
Q
QI JUN 已提交
322
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

340 341 342 343 344 345 346
  if (y_dims.size() == 1 && y_dims[0] == 1) {
    // y is a scalar
    auto extended_dims = framework::vectorize(x_dims);
    extended_dims.push_back(1);
    x_dims = framework::make_ddim(extended_dims);
  }

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
F
fengjiayi 已提交
362

363 364
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
C
chengduoZH 已提交
365 366
void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
                          const framework::Tensor* x,
C
chengduoZH 已提交
367
                          const framework::Tensor* y, int axis, Functor func,
C
chengduoZH 已提交
368
                          framework::Tensor* z) {
369
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
C
chengduoZH 已提交
370
      x, y, z, ctx.template device_context<DeviceContext>(), func);
F
fengjiayi 已提交
371 372 373 374 375 376 377 378 379 380 381

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                    "Rank of first input must >= rank of second input.");

  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

382 383 384 385 386 387 388
  if (y_dims.size() == 1 && y_dims[0] == 1) {
    // y is a scalar
    auto extended_dims = framework::vectorize(x_dims);
    extended_dims.push_back(1);
    x_dims = framework::make_ddim(extended_dims);
  }

F
fengjiayi 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

404 405
}  // namespace operators
}  // namespace paddle