CrossChannelNormLayer.cpp 4.6 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
16
#include "NormLayer.h"
G
gaoyuan 已提交
17 18 19 20 21
#include "paddle/math/BaseMatrix.h"
#include "paddle/math/Matrix.h"

namespace paddle {

G
gaoyuan 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
MatrixPtr CrossChannelNormLayer::createSampleMatrix(MatrixPtr data,
                                                    size_t iter,
                                                    size_t spatialDim) {
  return Matrix::create(data->getData() + iter * channels_ * spatialDim,
                        channels_,
                        spatialDim,
                        false,
                        useGpu_);
}

MatrixPtr CrossChannelNormLayer::createSpatialMatrix(MatrixPtr data,
                                                     size_t iter,
                                                     size_t spatialDim) {
  return Matrix::create(
      data->getData() + iter * spatialDim, 1, spatialDim, false, useGpu_);
}

39
void CrossChannelNormLayer::forward(PassType passType) {
G
gaoyuan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  Layer::forward(passType);
  MatrixPtr inV = getInputValue(0);

  size_t batchSize = inV->getHeight();
  size_t dataDim = inV->getWidth();
  CHECK_EQ(getSize(), dataDim);

  reserveOutput(batchSize, dataDim);
  MatrixPtr outV = getOutputValue();
  size_t spatialDim = dataDim / channels_;

  Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
  Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
  Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
  normBuffer_->zeroMem();
  dataBuffer_->zeroMem();
  // add eps to avoid overflow
  normBuffer_->addScalar(*normBuffer_, 1e-6);
  inV->square2(*dataBuffer_);
  for (size_t i = 0; i < batchSize; i++) {
G
gaoyuan 已提交
60 61 62 63 64
    const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
    const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
    MatrixPtr outVTmp = createSampleMatrix(outV, i, spatialDim);
    MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);

G
gaoyuan 已提交
65
    // compute norm.
G
gaoyuan 已提交
66
    spatialBuffer_->sumCols(*dataTmp, 1, 0);
G
gaoyuan 已提交
67 68
    spatialBuffer_->sqrt2(*spatialBuffer_);
    normTmp->copyFrom(*spatialBuffer_);
G
gaoyuan 已提交
69 70
    outVTmp->copyFrom(*inVTmp);
    outVTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
71
    // scale the layer.
G
gaoyuan 已提交
72
    outVTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
73 74 75
  }
}

76
void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
G
gaoyuan 已提交
77 78 79 80 81 82 83 84 85 86 87
  MatrixPtr inG = getInputGrad(0);
  MatrixPtr inV = getInputValue(0);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr outV = getOutputValue();

  size_t batchSize = inG->getHeight();
  size_t dataDim = inG->getWidth();
  size_t spatialDim = dataDim / channels_;

  dataBuffer_->dotMul(*outG, *outV);
  Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
88 89
  Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
  Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_);
G
gaoyuan 已提交
90 91
  scaleDiff_->zeroMem();
  for (size_t i = 0; i < batchSize; i++) {
G
gaoyuan 已提交
92 93 94 95 96 97 98
    MatrixPtr outGTmp = createSampleMatrix(outG, i, spatialDim);
    const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
    const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
    const MatrixPtr inGTmp = createSampleMatrix(inG, i, spatialDim);
    const MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);

    channelBuffer_->sumRows(*dataTmp, 1, 0);
G
gaoyuan 已提交
99 100 101 102
    channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW()));
    // store a / scale[i] in scaleDiff_ temporary
    scaleDiff_->add(*channelBuffer_, 1.);

G
gaoyuan 已提交
103
    sampleBuffer_->dotMul(*inVTmp, *outGTmp);
G
gaoyuan 已提交
104 105
    spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.);
    // scale the grad
G
gaoyuan 已提交
106 107
    inGTmp->copyFrom(*inVTmp);
    inGTmp->mulRowVector(*spatialBuffer_);
G
gaoyuan 已提交
108 109
    // divide by square of norm
    spatialBuffer_->dotMul(*normTmp, *normTmp);
G
gaoyuan 已提交
110
    inGTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
111
    // subtract
G
gaoyuan 已提交
112
    inGTmp->add(*outGTmp, -1, 1);
G
gaoyuan 已提交
113
    // divide by norm
G
gaoyuan 已提交
114
    inGTmp->divRowVector(*normTmp);
G
gaoyuan 已提交
115
    // scale the diff
G
gaoyuan 已提交
116
    inGTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
117 118 119 120 121 122 123
  }
  // updata scale
  if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_);
  scale_->getParameterPtr()->incUpdate(callback);
}

}  // namespace paddle