test_fleet_unitaccessor.py 3.8 KB
Newer Older
X
xujiaqi01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.incubate.fleet.base.role_maker as role_maker


class TestFleet1(unittest.TestCase):
    """
    Test cases for fleet minimize.
    """

    def setUp(self):
        """Set up, set envs."""
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"

    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
36 37
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib
X
xujiaqi01 已提交
38
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
M
malin10 已提交
39

X
xujiaqi01 已提交
40 41 42 43 44 45 46
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
47
        #role_maker.generate_role()
X
xujiaqi01 已提交
48 49
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
50
        #fleet.init(role_maker)
X
xujiaqi01 已提交
51 52 53 54 55
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
56
                                     dtype="int64", lod_level=1, append_batch_size=False)
X
xujiaqi01 已提交
57
            emb = fluid.layers.embedding(input=show, size=[1, 1], \
58 59
                                         is_sparse=True, is_distributed=True, \
                                         param_attr=fluid.ParamAttr(name="embedding"))
X
xujiaqi01 已提交
60 61
            fc = fluid.layers.fc(input=emb, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
62
                                      dtype="int64", lod_level=1, append_batch_size=False)
X
xujiaqi01 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)

        strategy = {}
        strategy["embedding"] = {}
        strategy["embedding"]["sparse_accessor_class"] = "DownpourUnitAccessor"
        strategy["embedding"]["embed_sparse_optimizer"] = "naive"
        try:
            adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam1 = fleet.distributed_optimizer(adam1, strategy=strategy)
            adam1.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adagrad"
            adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam2 = fleet.distributed_optimizer(adam2, strategy=strategy)
            adam2.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adam"
            adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam3 = fleet.distributed_optimizer(adam3, strategy=strategy)
            adam3.minimize([cost], [scope])
        except:
            print("do not support pslib test, skip")
            return


if __name__ == "__main__":
    unittest.main()