hashtable_kernel.cu 16.8 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
T
Thunderbrook 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
15
#ifdef PADDLE_WITH_HETERPS
16 17 18
#include <thread>
#include "paddle/fluid/framework/fleet/heter_ps/hashtable.h"
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
T
Thunderbrook 已提交
19 20 21 22

namespace paddle {
namespace framework {

23 24
#if defined(PADDLE_WITH_CUDA)

T
Thunderbrook 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
template <typename value_type>
struct ReplaceOp {
  __host__ __device__ value_type operator()(value_type new_value,
                                            value_type old_value) {
    return new_value;
  }
};

template <typename Table>
__global__ void insert_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              const typename Table::mapped_type* const vals,
                              size_t len) {
  ReplaceOp<typename Table::mapped_type> op;
  thrust::pair<typename Table::key_type, typename Table::mapped_type> kv;

  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    kv.first = keys[i];
    kv.second = vals[i];
    auto it = table->insert(kv, op);
    assert(it != table->end() && "error: insert fails: table is full");
  }
}

50 51 52
template <typename Table>
__global__ void insert_kernel(Table* table,
                              const typename Table::key_type* const keys,
Y
yaoxuefeng 已提交
53 54
                              size_t len, char* pool, size_t feature_value_size,
                              int start_index) {
55 56 57 58 59 60 61
  ReplaceOp<typename Table::mapped_type> op;
  thrust::pair<typename Table::key_type, typename Table::mapped_type> kv;

  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;

  if (i < len) {
    kv.first = keys[i];
Y
yaoxuefeng 已提交
62 63
    uint64_t offset = uint64_t(start_index + i) * feature_value_size;
    kv.second = (Table::mapped_type)(pool + offset);
64 65 66 67 68
    auto it = table->insert(kv, op);
    assert(it != table->end() && "error: insert fails: table is full");
  }
}

T
Thunderbrook 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename Table>
__global__ void search_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              typename Table::mapped_type* const vals,
                              size_t len) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);
    if (it != table->end()) {
      vals[i] = it->second;
    }
  }
}

83 84 85
template <typename Table>
__global__ void dy_mf_search_kernel(Table* table,
                                    const typename Table::key_type* const keys,
Y
yaoxuefeng 已提交
86
                                    char* vals, size_t len,
87 88 89 90 91 92
                                    size_t pull_feature_value_size) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);

    if (it != table->end()) {
Y
yaoxuefeng 已提交
93 94 95
      uint64_t offset = i * pull_feature_value_size;
      FeatureValue& cur = *(FeatureValue*)(vals + offset);
      FeatureValue& input = *(FeatureValue*)(it->second);
96 97 98
    }
  }
}
99

T
Thunderbrook 已提交
100 101
template <typename Table, typename GradType, typename Sgd>
__global__ void update_kernel(Table* table,
Z
zmxdream 已提交
102
                              const OptimizerConfig& optimizer_config,
T
Thunderbrook 已提交
103 104 105 106 107 108 109
                              const typename Table::key_type* const keys,
                              const GradType* const grads, size_t len,
                              Sgd sgd) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);
    if (it != table->end()) {
Z
zmxdream 已提交
110
      sgd.update_value(optimizer_config, (it.getter())->second, grads[i]);
T
Thunderbrook 已提交
111 112 113 114
    }
  }
}

115 116
template <typename Table, typename Sgd>
__global__ void dy_mf_update_kernel(Table* table,
Z
zmxdream 已提交
117
                                    const OptimizerConfig& optimizer_config,
118 119 120 121 122 123 124 125
                                    const typename Table::key_type* const keys,
                                    const char* const grads, size_t len,
                                    Sgd sgd, size_t grad_value_size) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);
    if (it != table->end()) {
      FeaturePushValue* cur = (FeaturePushValue*)(grads + i * grad_value_size);
Z
zmxdream 已提交
126
      sgd.dy_mf_update_value(optimizer_config, (it.getter())->second, *cur);
127
    } else {
Y
yaoxuefeng 已提交
128
      printf("warning: push miss key: %d", keys[i]);
129 130 131 132
    }
  }
}

T
Thunderbrook 已提交
133 134 135
template <typename KeyType, typename ValType>
HashTable<KeyType, ValType>::HashTable(size_t capacity) {
  container_ = new TableContainer<KeyType, ValType>(capacity);
Z
zmxdream 已提交
136 137 138
  cudaMalloc((void**)&device_optimizer_config_, sizeof(OptimizerConfig));
  cudaMemcpy((void*)device_optimizer_config_, &host_optimizer_config_,
             sizeof(OptimizerConfig), cudaMemcpyHostToDevice);
139
  rwlock_.reset(new phi::RWLock);
T
Thunderbrook 已提交
140 141 142 143 144 145 146
}

template <typename KeyType, typename ValType>
HashTable<KeyType, ValType>::~HashTable() {
  delete container_;
}

Z
zmxdream 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::set_sparse_sgd(
    const OptimizerConfig& optimizer_config) {
  host_optimizer_config_.set_sparse_sgd(optimizer_config);
  cudaMemcpy((void*)device_optimizer_config_, &host_optimizer_config_,
             sizeof(OptimizerConfig), cudaMemcpyHostToDevice);
}

template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::set_embedx_sgd(
    const OptimizerConfig& optimizer_config) {
  host_optimizer_config_.set_embedx_sgd(optimizer_config);
  cudaMemcpy((void*)device_optimizer_config_, &host_optimizer_config_,
             sizeof(OptimizerConfig), cudaMemcpyHostToDevice);
}

T
Thunderbrook 已提交
163 164 165 166 167 168
template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::show() {
  container_->print();
}

template <typename KeyType, typename ValType>
169
template <typename StreamType>
T
Thunderbrook 已提交
170
void HashTable<KeyType, ValType>::get(const KeyType* d_keys, ValType* d_vals,
171
                                      size_t len, StreamType stream) {
T
Thunderbrook 已提交
172 173 174 175 176 177 178 179
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  search_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_vals, len);
}

180
template <typename KeyType, typename ValType>
181
template <typename StreamType>
182
void HashTable<KeyType, ValType>::get(const KeyType* d_keys, char* d_vals,
183
                                      size_t len, StreamType stream) {
184 185 186 187 188 189 190 191
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  dy_mf_search_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(
      container_, d_keys, d_vals, len, pull_feature_value_size_);
}

T
Thunderbrook 已提交
192
template <typename KeyType, typename ValType>
193
template <typename StreamType>
T
Thunderbrook 已提交
194 195
void HashTable<KeyType, ValType>::insert(const KeyType* d_keys,
                                         const ValType* d_vals, size_t len,
196
                                         StreamType stream) {
T
Thunderbrook 已提交
197 198 199 200 201 202 203 204
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  insert_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_vals, len);
}

205
template <typename KeyType, typename ValType>
206
template <typename StreamType>
207
void HashTable<KeyType, ValType>::insert(const KeyType* d_keys, size_t len,
Y
yaoxuefeng 已提交
208 209
                                         char* pool, size_t feature_value_size,
                                         size_t start_index,
210
                                         StreamType stream) {
211 212 213 214 215 216
  if (len == 0) {
    return;
  }
  if (pool == NULL) {
    return;
  }
217
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
Y
yaoxuefeng 已提交
218 219
  insert_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(
      container_, d_keys, len, pool, feature_value_size, start_index);
220 221
}

T
Thunderbrook 已提交
222
template <typename KeyType, typename ValType>
223 224
template <typename StreamType>
void HashTable<KeyType, ValType>::dump_to_cpu(int devid, StreamType stream) {
T
Thunderbrook 已提交
225
  container_->prefetch(cudaCpuDeviceId, stream);
T
Thunderbrook 已提交
226
  std::vector<std::thread> threads;
T
Thunderbrook 已提交
227 228 229
  size_t num = container_->size();
  KeyType unuse_key = std::numeric_limits<KeyType>::max();
  thrust::pair<KeyType, ValType>* kv = container_->data();
T
Thunderbrook 已提交
230 231 232 233 234 235 236 237 238 239 240 241

  int thread_num = 8;
  int len_per_thread = num / thread_num;
  int remain = num % thread_num;
  int begin = 0;

  auto dump_func = [unuse_key, kv](int left, int right) {
    for (int i = left; i < right; i++) {
      if (kv[i].first == unuse_key) {
        continue;
      }
      ValType& gpu_val = kv[i].second;
T
Thunderbrook 已提交
242
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      auto* downpour_value =
          (paddle::ps::DownpourFixedFeatureValue*)(gpu_val.cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val.mf_size > 0 && downpour_value_size == 7) {
        downpour_value->resize(gpu_val.mf_size + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();
      // cpu_val[0] = 0;
      cpu_val[1] = gpu_val.delta_score;
      cpu_val[2] = gpu_val.show;
      cpu_val[3] = gpu_val.clk;
      cpu_val[4] = gpu_val.lr;
      cpu_val[5] = gpu_val.lr_g2sum;
      cpu_val[6] = gpu_val.slot;
      if (gpu_val.mf_size > 0) {
        for (int x = 0; x < gpu_val.mf_size; x++) {
          cpu_val[x + 7] = gpu_val.mf[x];
        }
T
Thunderbrook 已提交
261
      }
T
Thunderbrook 已提交
262 263
#endif
#ifdef PADDLE_WITH_PSCORE
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
      auto* downpour_value =
          (paddle::distributed::FixedFeatureValue*)(gpu_val.cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val.mf_size > 0 && downpour_value_size == 7) {
        downpour_value->resize(gpu_val.mf_size + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();
      // cpu_val[0] = 0;
      cpu_val[2] = gpu_val.delta_score;
      cpu_val[3] = gpu_val.show;
      cpu_val[4] = gpu_val.clk;
      cpu_val[5] = gpu_val.lr;
      cpu_val[6] = gpu_val.lr_g2sum;
      cpu_val[0] = gpu_val.slot;
      if (gpu_val.mf_size > 0) {
        for (int x = 0; x < gpu_val.mf_size; x++) {
          cpu_val[x + 7] = gpu_val.mf[x];
        }
T
Thunderbrook 已提交
282
      }
T
Thunderbrook 已提交
283
#endif
T
Thunderbrook 已提交
284 285 286 287 288 289 290 291 292 293
    }
  };

  for (int i = 0; i < thread_num; i++) {
    threads.push_back(std::thread(
        dump_func, begin, begin + len_per_thread + (i < remain ? 1 : 0)));
    begin += len_per_thread + (i < remain ? 1 : 0);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
294 295
  }

T
Thunderbrook 已提交
296
  // container_->prefetch(devid, stream);
T
Thunderbrook 已提交
297 298
}

T
Thunderbrook 已提交
299
template <typename KeyType, typename ValType>
300
template <typename GradType, typename Sgd, typename StreamType>
T
Thunderbrook 已提交
301 302
void HashTable<KeyType, ValType>::update(const KeyType* d_keys,
                                         const GradType* d_grads, size_t len,
303
                                         Sgd sgd, StreamType stream) {
T
Thunderbrook 已提交
304 305 306 307
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
Z
zmxdream 已提交
308 309
  update_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(
      container_, *device_optimizer_config_, d_keys, d_grads, len, sgd);
T
Thunderbrook 已提交
310 311
}

312
template <typename KeyType, typename ValType>
313
template <typename Sgd, typename StreamType>
314 315
void HashTable<KeyType, ValType>::update(const KeyType* d_keys,
                                         const char* d_grads, size_t len,
316
                                         Sgd sgd, StreamType stream) {
317 318 319 320 321
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  dy_mf_update_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(
Z
zmxdream 已提交
322 323
      container_, *device_optimizer_config_, d_keys, d_grads, len, sgd,
      push_grad_value_size_);
324 325
}

326
template class HashTable<unsigned long, paddle::framework::FeatureValue>;
Y
yaoxuefeng 已提交
327
template class HashTable<unsigned long, paddle::framework::FeatureValue*>;
S
seemingwang 已提交
328
template class HashTable<long, int>;
T
Thunderbrook 已提交
329 330
template class HashTable<unsigned long, int>;
template class HashTable<unsigned long, unsigned long>;
S
seemingwang 已提交
331
template class HashTable<long, long>;
332 333
template class HashTable<long, unsigned long>;
template class HashTable<long, unsigned int>;
334 335 336 337 338 339

template void HashTable<unsigned long, paddle::framework::FeatureValue>::get<
    cudaStream_t>(const unsigned long* d_keys,
                  paddle::framework::FeatureValue* d_vals, size_t len,
                  cudaStream_t stream);

Y
yaoxuefeng 已提交
340 341 342 343
template void
HashTable<unsigned long, paddle::framework::FeatureValue*>::get<cudaStream_t>(
    const unsigned long* d_keys, char* d_vals, size_t len, cudaStream_t stream);

S
seemingwang 已提交
344 345 346 347
template void HashTable<long, int>::get<cudaStream_t>(const long* d_keys,
                                                      int* d_vals, size_t len,
                                                      cudaStream_t stream);

T
Thunderbrook 已提交
348 349
template void HashTable<unsigned long, int>::get<cudaStream_t>(
    const unsigned long* d_keys, int* d_vals, size_t len, cudaStream_t stream);
350 351
template void HashTable<long, unsigned long>::get<cudaStream_t>(
    const long* d_keys, unsigned long* d_vals, size_t len, cudaStream_t stream);
S
seemingwang 已提交
352 353 354
template void HashTable<long, long>::get<cudaStream_t>(const long* d_keys,
                                                       long* d_vals, size_t len,
                                                       cudaStream_t stream);
355 356
template void HashTable<long, unsigned int>::get<cudaStream_t>(
    const long* d_keys, unsigned int* d_vals, size_t len, cudaStream_t stream);
357 358 359 360 361 362 363 364 365 366
// template void
// HashTable<unsigned long, paddle::framework::FeatureValue>::get<cudaStream_t>(
//    const unsigned long* d_keys, char* d_vals, size_t len, cudaStream_t
//    stream);

template void HashTable<unsigned long, paddle::framework::FeatureValue>::insert<
    cudaStream_t>(const unsigned long* d_keys,
                  const paddle::framework::FeatureValue* d_vals, size_t len,
                  cudaStream_t stream);

Y
yaoxuefeng 已提交
367 368 369 370 371
template void HashTable<unsigned long, paddle::framework::FeatureValue*>::
    insert<cudaStream_t>(const unsigned long* d_keys, size_t len, char* pool,
                         size_t feature_value_size, size_t start_index,
                         cudaStream_t stream);

S
seemingwang 已提交
372 373 374 375
template void HashTable<long, int>::insert<cudaStream_t>(const long* d_keys,
                                                         const int* d_vals,
                                                         size_t len,
                                                         cudaStream_t stream);
S
seemingwang 已提交
376 377 378 379
template void HashTable<long, long>::insert<cudaStream_t>(const long* d_keys,
                                                          const long* d_vals,
                                                          size_t len,
                                                          cudaStream_t stream);
S
seemingwang 已提交
380

T
Thunderbrook 已提交
381 382 383
template void HashTable<unsigned long, int>::insert<cudaStream_t>(
    const unsigned long* d_keys, const int* d_vals, size_t len,
    cudaStream_t stream);
384 385 386 387 388 389 390 391
template void HashTable<long, unsigned long>::insert<cudaStream_t>(
    const long* d_keys, const unsigned long* d_vals, size_t len,
    cudaStream_t stream);

template void HashTable<long, unsigned int>::insert<cudaStream_t>(
    const long* d_keys, const unsigned int* d_vals, size_t len,
    cudaStream_t stream);

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
// template void HashTable<unsigned long,
// paddle::framework::FeatureValue>::insert<
//    cudaStream_t>(const unsigned long* d_keys, size_t len, char* pool,
//                  size_t start_index, cudaStream_t stream);

template void HashTable<unsigned long, paddle::framework::FeatureValue>::
    dump_to_cpu<cudaStream_t>(int devid, cudaStream_t stream);

template void HashTable<unsigned long, paddle::framework::FeatureValue>::update<
    paddle::framework::FeaturePushValue,
    Optimizer<paddle::framework::FeatureValue,
              paddle::framework::FeaturePushValue>,
    cudaStream_t>(const unsigned long* d_keys,
                  const paddle::framework::FeaturePushValue* d_grads,
                  size_t len, Optimizer<paddle::framework::FeatureValue,
                                        paddle::framework::FeaturePushValue>
                                  sgd,
                  cudaStream_t stream);

Y
yaoxuefeng 已提交
411 412 413 414 415 416 417 418 419 420
template void
HashTable<unsigned long, paddle::framework::FeatureValue*>::update<
    Optimizer<paddle::framework::FeatureValue,
              paddle::framework::FeaturePushValue>,
    cudaStream_t>(const unsigned long* d_keys, const char* d_grads, size_t len,
                  Optimizer<paddle::framework::FeatureValue,
                            paddle::framework::FeaturePushValue>
                      sgd,
                  cudaStream_t stream);

421 422 423 424 425 426 427 428 429 430 431 432
// template void HashTable<unsigned long,
// paddle::framework::FeatureValue>::update<
//    Optimizer<paddle::framework::FeatureValue,
//              paddle::framework::FeaturePushValue>,
//    cudaStream_t>(const unsigned long* d_keys, const char* d_grads, size_t
//    len,
//                  Optimizer<paddle::framework::FeatureValue,
//                            paddle::framework::FeaturePushValue>
//                      sgd,
//                  cudaStream_t stream);

#endif
T
Thunderbrook 已提交
433 434 435
}  // end namespace framework
}  // end namespace paddle
#endif