backward_test.cc 32.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17
#include <gtest/gtest.h>
18 19
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
Y
Yu Yang 已提交
20
#include "paddle/framework/op_registry.h"
21
#include "paddle/framework/var_desc.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25 26
namespace paddle {
namespace framework {

D
dongzhihong 已提交
27 28
using DeviceContext = platform::DeviceContext;

Y
Yu Yang 已提交
29
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
30
 public:
Y
Yu Yang 已提交
31
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
32
      : OpProtoAndCheckerMaker(proto, op_checker) {
33 34 35
    AddInput("X", "Input X of Add");
    AddInput("b", "Bias of Add");
    AddOutput("Out", "Out of Add");
Y
Yu Yang 已提交
36 37 38 39
    AddComment("Add Op");
  }
};

40 41 42 43 44
class RowWiseAddGradMaker : public SingleGradOpDescMaker {
 public:
  using SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
45 46 47 48 49 50 51
  std::unique_ptr<OpDescBind> Apply() const override {
    auto grad_op = new OpDescBind();
    grad_op->SetInput(GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(GradVarName("X"), InputGrad("X"));
    grad_op->SetOutput(GradVarName("b"), InputGrad("b"));
    grad_op->SetType("rowwise_add_grad");
    return std::unique_ptr<OpDescBind>(grad_op);
52 53 54
  }
};

Y
Yu Yang 已提交
55 56 57 58
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
59 60
    AddInput("X", "A");
    AddInput("Y", "B");
Y
Yu Yang 已提交
61
    AddOutput("Out", "Out");
F
fengjiayi 已提交
62 63
    AddAttr<int>("x_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
    AddAttr<int>("y_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
Y
Yu Yang 已提交
64 65 66 67 68 69 70 71 72
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
Y
Yu Yang 已提交
73
    AddOutput("Out", "Y");
Y
Yu Yang 已提交
74 75 76 77
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
78 79 80 81 82
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
Y
Yu Yang 已提交
83
    AddOutput("Out", "Y output");
D
dongzhihong 已提交
84 85 86 87
    AddComment("NoGradOp, same input output. no Grad");
  }
};

D
dongzhihong 已提交
88
class FcOp : public operators::NetOp {
Y
Yu Yang 已提交
89
 public:
Y
Yu Yang 已提交
90 91
  FcOp(const std::string &type, const VariableNameMap &inputs,
       const VariableNameMap &outputs, const AttributeMap &attrs)
Y
Yu Yang 已提交
92
      : NetOp(type, inputs, outputs, attrs) {
Y
Yu Yang 已提交
93 94 95
    AppendOp(OpRegistry::CreateOp("mul",
                                  {{"X", {Input("X")}}, {"Y", {Input("W")}}},
                                  {{"Out", {Output("mul_result")}}}, {}));
96
    auto input_b = Inputs("b");
Y
Yu Yang 已提交
97
    std::string before_act = "mul_result";
98
    if (input_b.size() != 0) {
Y
Yu Yang 已提交
99
      AppendOp(OpRegistry::CreateOp(
100
          "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
Y
Yu Yang 已提交
101
          {{"Out", {Output("add_result")}}}, {}));
Y
Yu Yang 已提交
102 103 104
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
105 106
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
107
      }
Y
Yu Yang 已提交
108
    }
Y
Yu Yang 已提交
109

Y
Yu Yang 已提交
110 111
    AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
                                  {{"Out", {Output("Out")}}}, {}));
Y
Yu Yang 已提交
112 113 114 115 116 117 118 119 120 121 122
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
123 124
    AddOutput("mul_result", "").AsIntermediate();
    AddOutput("add_result", "").AsIntermediate();
Y
Yu Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
D
dangqingqing 已提交
145 146
    AddInput("X", "x");
    AddOutput("Y", "out");
Y
Yu Yang 已提交
147 148 149
    AddComment("");
  }
};
Y
Yu Yang 已提交
150

D
dongzhihong 已提交
151
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
152
 public:
D
dongzhihong 已提交
153
  SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
Y
Yu Yang 已提交
154
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
155 156
    AddInput("X", "the input tensors of sum operator.").AsDuplicable();
    AddOutput("Out", "the output tensor of sum operator.");
Y
Yu Yang 已提交
157 158 159
    AddComment("");
  }
};
D
dongzhihong 已提交
160

F
fengjiayi 已提交
161 162 163 164 165 166 167 168 169 170 171 172
class MultInOutOpMaker : public OpProtoAndCheckerMaker {
 public:
  MultInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("H", "h");
    AddOutput("Y", "y");
    AddOutput("Z", "z");
    AddComment("");
  }
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class MinusGradOpDescMaker : public GradOpDescMakerBase {
 public:
  using GradOpDescMakerBase::GradOpDescMakerBase;

  std::vector<std::unique_ptr<OpDescBind>> operator()() const override {
    std::vector<std::unique_ptr<OpDescBind>> retv;
    auto x_g = InputGrad("X");
    if (!x_g.empty()) {
      auto *op_desc = new OpDescBind();
      op_desc->SetType("scale");
      op_desc->SetInput("X", OutputGrad("Out"));
      op_desc->SetOutput("Out", x_g);
      op_desc->SetAttr("scale", 1.0f);
      retv.emplace_back(op_desc);
    }

    auto y_g = InputGrad("Y");
    if (!y_g.empty()) {
      auto *op_desc = new OpDescBind();
      op_desc->SetType("scale");
      op_desc->SetInput("X", OutputGrad("Out"));
      op_desc->SetOutput("Out", y_g);
      op_desc->SetAttr("scale", -1.0f);
      retv.emplace_back(op_desc);
    }
    return retv;
  }
};

class MinusOpMaker : public OpProtoAndCheckerMaker {
 public:
  MinusOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "");
    AddInput("Y", "");
    AddOutput("Out", "");
    AddComment("minus for unittest");
  }
};
Y
Yu Yang 已提交
212 213 214 215
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
D
dongzhihong 已提交
216
namespace ops = paddle::operators;
Y
Yu Yang 已提交
217
using EnforceNotMet = paddle::platform::EnforceNotMet;
218 219 220
REGISTER_OPERATOR(rowwise_add, f::NOP, f::RowWiseAddOpMaker,
                  f::RowWiseAddGradMaker);
REGISTER_OPERATOR(rowwise_add_grad, f::NOP);
221 222
REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP);
REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP);
F
fengjiayi 已提交
223 224
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker);
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker);
D
dongzhihong 已提交
225
REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP);
F
fengjiayi 已提交
226
REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker);
227 228
REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad,
            f::NOP);
F
fengjiayi 已提交
229
REGISTER_OP(mult_in_out, f::NOP, f::MultInOutOpMaker, mult_in_out_grad, f::NOP);
230
REGISTER_OPERATOR(minus, f::NOP, f::MinusOpMaker, f::MinusGradOpDescMaker);
Y
Yu Yang 已提交
231

232 233 234 235 236 237 238 239 240 241
TEST(Backward, simple_op_not_need_grad) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  ASSERT_NE(fwd, nullptr);
  auto gop = f::Backward(*fwd, {"x"});
  ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName);

  auto no_input_gop = f::Backward(*fwd, {"x", "b"});
  ASSERT_NE(no_input_gop, nullptr);
  ASSERT_TRUE(no_input_gop->IsNetOp());
Y
Yu Yang 已提交
242
  ASSERT_EQ(0UL, static_cast<ops::NetOp *>(no_input_gop.get())->ops_.size());
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
}

TEST(Backward, net_fc_backward_normal) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_re"}},
                               {"Out", {"out"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(3UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
262
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
263 264

  f::OperatorBase &d_add = *net->ops_[1];
Q
qiaolongfei 已提交
265
  ASSERT_EQ("rowwise_add_grad", d_add.Type());
266 267

  f::OperatorBase &d_mul = *net->ops_[2];
Q
qiaolongfei 已提交
268
  ASSERT_EQ("mul_grad", d_mul.Type());
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

TEST(Backward, net_fc_backward_not_have_b) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_res"}},
                               {"Out", {"tmp"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(2UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
288
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
289 290

  f::OperatorBase &d_mul = *net->ops_[1];
Q
qiaolongfei 已提交
291
  ASSERT_EQ("mul_grad", d_mul.Type());
292 293 294 295
}

TEST(Backward, net_input_of_network_not_need_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
296
  net.AppendOp(f::OpRegistry::CreateOp(
297 298 299 300 301
      "fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_tmp_0"}},
       {"add_result", {"add_tmp_0"}},
       {"Out", {"hidden0"}}},
      {}));
Y
Yu Yang 已提交
302
  net.AppendOp(f::OpRegistry::CreateOp(
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
      "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_tmp_1"}},
       {"add_result", {"add_tmp_1"}},
       {"Out", {"hidden1"}}},
      {}));
  net.CompleteAddOp();
  auto bwd = Backward(net, {"x"});  // x@GRAD is not need.
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());

  auto output_vars = bwd_net->OutputVars(true);
  std::unordered_set<std::string> all_outputs =
      std::unordered_set<std::string>(output_vars.begin(), output_vars.end());
  all_outputs.erase(f::kEmptyVarName);

  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
    ASSERT_NE(all_outputs.find(f::GradVarName(out)), all_outputs.end());
  }

  // Not Generated X
  ASSERT_EQ(all_outputs.find(f::GradVarName("X")), all_outputs.end());

  ASSERT_EQ(2UL, bwd_net->ops_.size());
  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
  ASSERT_EQ(f::kEmptyVarName,
            first_fc_grad->ops_[2]->Output(f::GradVarName("X")));
}

TEST(Backward, net_shared_weight) {
  ops::NetOp net;
Y
Yu Yang 已提交
335 336 337 338
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
                                       {{"Out", {"out"}}}, {}));
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
                                       {{"Out", {"FinalOut"}}}, {}));
339 340 341 342 343 344
  net.CompleteAddOp();

  auto bwd = f::Backward(net, {});
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
  ASSERT_EQ(3UL, bwd_net->ops_.size());
D
dongzhihong 已提交
345
  ASSERT_EQ("sum", bwd_net->ops_[2]->Type());
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

TEST(Backward, op_all_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"x", "b"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_all_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"out"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_part_of_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
                                     {{"y", {"Y"}}, {"z", {"Z"}}}, {});
  auto backward = f::Backward(*fwd, {"Z"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(net->ops_.size(), 2UL);

  auto &fill_zero = *net->ops_[0];
Q
qiaolongfei 已提交
375
  ASSERT_EQ("fill_zeros_like", fill_zero.Type());
D
dangqingqing 已提交
376 377 378 379
  ASSERT_EQ(1UL, fill_zero.Inputs("X").size());
  ASSERT_EQ("Z", fill_zero.Input("X"));
  ASSERT_EQ(1UL, fill_zero.Outputs("Y").size());
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y"));
380 381

  auto &d_many_out = *net->ops_[1];
Q
qiaolongfei 已提交
382 383
  ASSERT_EQ("many_output_op_grad", d_many_out.Type());
  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.Inputs().size());  // I/O/OG
384 385 386 387 388 389 390 391 392 393 394
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
            d_many_out.Input(f::GradVarName("z")));
  ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
  ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
}

TEST(Backward, op_part_of_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}},
                                     {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"a"});
  auto &grad_mul = *backward;
Q
qiaolongfei 已提交
395 396 397
  ASSERT_EQ(grad_mul.Type(), "mul_grad");
  ASSERT_EQ(grad_mul.Inputs().size(), 2UL + 1UL + 1UL);
  ASSERT_EQ(grad_mul.Outputs().size(), 2UL);
398 399 400 401 402 403 404 405 406 407
  ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName);
  ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b"));
  ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
  ASSERT_EQ(grad_mul.Input("X"), "a");
  ASSERT_EQ(grad_mul.Input("Y"), "b");
  ASSERT_EQ(grad_mul.Input("Out"), "out");
}

TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
408
  net.AppendOp(f::OpRegistry::CreateOp(
409 410 411 412 413
      "fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_out1"}},
       {"add_result", {"add_out1"}},
       {"Out", {"out1"}}},
      {}));
Y
Yu Yang 已提交
414
  net.AppendOp(f::OpRegistry::CreateOp(
415 416 417 418 419
      "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_out2"}},
       {"add_result", {"tmp_out2"}},
       {"Out", {"out2"}}},
      {}));
Y
Yu Yang 已提交
420
  net.AppendOp(f::OpRegistry::CreateOp(
421 422 423 424 425 426 427 428 429 430 431 432
      "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
      {{"mul_result", {"mul_out3"}},
       {"add_result", {"tmp_out3"}},
       {"Out", {"out3"}}},
      {}));
  net.CompleteAddOp();

  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
  ASSERT_TRUE(backward->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
  auto &grad_fc = *bwd_net->ops_[0];
Y
Yu Yang 已提交
433 434

  const char *all = paddle::operators::NetOp::kAll;
Q
qiaolongfei 已提交
435
  EXPECT_EQ(grad_fc.Inputs(all).size(),
436 437 438
            2UL       /* external input number */
                + 1UL /* external output number*/
                + 1UL /* number of gradient of external output*/
439 440
                + 2UL /* internal variable number*/
            );
Q
qiaolongfei 已提交
441
  EXPECT_EQ(grad_fc.Outputs(all).size(),
442
            2UL       /* input number of mul*/
443 444 445
                + 2UL /* input number of rowwise_add*/
                + 1UL /* input number of sigmod */
                - 1UL /* out2 is not needed*/);
Q
qiaolongfei 已提交
446 447 448 449
  EXPECT_EQ(bwd_net->ops_[1]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[1]->Outputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL);
450
}
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

// =================================== //

f::ProgramDesc *GetNewProgramDesc() {
  auto *program_desc = new f::ProgramDesc();
  auto *root_block = program_desc->add_blocks();
  root_block->set_idx(0);
  root_block->set_parent_idx(-1);
  return program_desc;
}

TEST(Backward, simple_single_op) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op = block->AppendOp();
  op->SetType("rowwise_add");
  op->SetInput("X", {"x"});
  op->SetInput("b", {"b"});
  op->SetOutput("Out", {"out"});

472
  auto target = f::VarDescBind("out");
F
fengjiayi 已提交
473
  auto var_to_grad = AppendBackward(program, target, {});
474

475 476 477 478 479
  ASSERT_EQ(block->AllOps().size(), 3UL);
  f::OpDescBind *fill_op = block->AllOps()[1];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op = block->AllOps()[2];
480 481 482 483 484 485 486 487 488
  EXPECT_EQ(grad_op->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b")}));
F
fengjiayi 已提交
489 490 491 492 493 494 495

  EXPECT_EQ(var_to_grad.size(), 2UL);
  EXPECT_EQ(var_to_grad.at("b"), f::GradVarInfo(f::GradVarName("b"), 0, 2));
  EXPECT_EQ(var_to_grad.at("x"), f::GradVarInfo(f::GradVarName("x"), 0, 2));

  EXPECT_TRUE(block->HasVar(f::GradVarName("b")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x")));
496 497
}

F
fengjiayi 已提交
498 499 500 501 502 503 504 505 506
TEST(Backward, default_attribute) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op = block->AppendOp();
  op->SetType("mul");
  op->SetInput("X", {"x"});
  op->SetInput("Y", {"y"});
  op->SetOutput("Out", {"out"});
507
  op->CheckAttrs();
F
fengjiayi 已提交
508

509 510
  auto target = f::VarDescBind("out");
  AppendBackward(program, target, {});
F
fengjiayi 已提交
511

512
  ASSERT_EQ(block->AllOps().size(), 3UL);
F
fengjiayi 已提交
513 514 515
  EXPECT_EQ(boost::get<int>(op->GetAttr("x_num_col_dims")), 1);
  EXPECT_EQ(boost::get<int>(op->GetAttr("y_num_col_dims")), 1);

516 517 518 519
  f::OpDescBind *fill_op = block->AllOps()[1];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op = block->AllOps()[2];
F
fengjiayi 已提交
520 521 522 523 524
  ASSERT_EQ(grad_op->Type(), "mul_grad");
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("x_num_col_dims")), 1);
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("y_num_col_dims")), 1);
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
TEST(Backward, simple_mult_op) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

547 548
  auto target = f::VarDescBind("out3");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
549
  auto var_to_grad = AppendBackward(program, target, {});
550

551 552 553 554 555
  ASSERT_EQ(block->AllOps().size(), 6UL + 1);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op1 = block->AllOps()[6];
556 557 558 559 560 561 562 563 564 565
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

566
  f::OpDescBind *grad_op2 = block->AllOps()[5];
567 568 569 570 571 572 573 574 575 576 577 578 579
  EXPECT_EQ(grad_op2->Type(), "mul_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

580
  f::OpDescBind *grad_op3 = block->AllOps()[4];
581 582 583 584 585 586 587 588 589
  EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));
F
fengjiayi 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

  EXPECT_EQ(var_to_grad.size(), 6UL);
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 5));
  EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
  EXPECT_EQ(var_to_grad.at("out2"),
            f::GradVarInfo(f::GradVarName("out2"), 0, 4));
  EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));

  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
F
fengjiayi 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
}

TEST(Backward, intermedia_var_no_grad) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"x2"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

  f::OpDescBind *op4 = block->AppendOp();
  op4->SetType("mul");
  op4->SetInput("X", {"out1"});
  op4->SetInput("Y", {"out3"});
  op4->SetOutput("Out", {"out4"});

637 638
  auto target = f::VarDescBind("out4");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
639
  auto var_to_grad = AppendBackward(program, target, {"out3"});
F
fengjiayi 已提交
640

641 642 643 644 645
  ASSERT_EQ(block->AllOps().size(), 7UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op1 = block->AllOps()[6];
F
fengjiayi 已提交
646 647 648 649 650 651 652 653 654 655
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

656
  f::OpDescBind *grad_op4 = block->AllOps()[5];
F
fengjiayi 已提交
657 658 659 660 661 662 663 664 665 666
  EXPECT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"out3"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out4"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out4")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
667
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector<std::string>());
F
fengjiayi 已提交
668 669 670 671 672 673 674 675 676 677

  EXPECT_EQ(var_to_grad.size(), 3UL);
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 5));

  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
F
fengjiayi 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
}

TEST(Backward, var_no_grad) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("mult_in_out");
  op1->SetInput("X", {"x1"});
  op1->SetInput("H", {"h1"});
  op1->SetOutput("Y", {"y1"});
  op1->SetOutput("Z", {"z1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mult_in_out");
  op2->SetInput("X", {"y1"});
  op2->SetInput("H", {"z1"});
  op2->SetOutput("Y", {"y2"});
  op2->SetOutput("Z", {"z2"});

698 699
  auto target = f::VarDescBind("z2");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
700
  auto var_to_grad = AppendBackward(program, target, {"z1"});
F
fengjiayi 已提交
701

702 703 704 705 706
  ASSERT_EQ(block->AllOps().size(), 6UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op2 = block->AllOps()[3];
F
fengjiayi 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719
  ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op2->Input("H"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Z"), std::vector<std::string>({"z2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Z")),
            std::vector<std::string>({f::GradVarName("z2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("y1")}));
720
  EXPECT_EQ(grad_op2->Output(f::GradVarName("H")), std::vector<std::string>());
F
fengjiayi 已提交
721

722
  f::OpDescBind *fill_zero_op = block->AllOps()[4];
F
fengjiayi 已提交
723 724 725 726 727 728 729
  ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like");
  ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL);
  ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL);
  EXPECT_EQ(fill_zero_op->Input("X"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(fill_zero_op->Output("Y"),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));

730
  f::OpDescBind *grad_op1 = block->AllOps()[5];
F
fengjiayi 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input("X"), std::vector<std::string>({"x1"}));
  EXPECT_EQ(grad_op1->Input("H"), std::vector<std::string>({"h1"}));
  EXPECT_EQ(grad_op1->Input("Y"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op1->Input("Z"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y1")}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Z")),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("H")),
            std::vector<std::string>({f::GradVarName("h1")}));
F
fengjiayi 已提交
746 747 748 749 750 751 752 753 754

  EXPECT_EQ(var_to_grad.size(), 3UL);
  EXPECT_EQ(var_to_grad.at("y1"), f::GradVarInfo(f::GradVarName("y1"), 0, 3));
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 5));
  EXPECT_EQ(var_to_grad.at("h1"), f::GradVarInfo(f::GradVarName("h1"), 0, 5));

  EXPECT_TRUE(block->HasVar(f::GradVarName("y1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("h1")));
F
fengjiayi 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
}

TEST(Backward, shared_var) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out1"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

779 780
  auto target = f::VarDescBind("out3");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
781
  auto var_to_grad = AppendBackward(program, target, {});
F
fengjiayi 已提交
782

783 784 785 786 787
  ASSERT_EQ(block->AllOps().size(), 8UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op3 = block->AllOps()[4];
F
fengjiayi 已提交
788 789 790 791 792 793 794 795 796 797
  ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0"}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));

798
  f::OpDescBind *grad_op4 = block->AllOps()[5];
F
fengjiayi 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811
  ASSERT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

812
  f::OpDescBind *sum_op = block->AllOps()[6];
F
fengjiayi 已提交
813 814 815 816 817 818 819 820 821
  ASSERT_EQ(sum_op->Type(), "sum");
  ASSERT_EQ(sum_op->InputNames().size(), 1UL);
  ASSERT_EQ(sum_op->OutputNames().size(), 1UL);
  EXPECT_EQ(sum_op->Input("X"),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0",
                                      f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(sum_op->Output("Out"),
            std::vector<std::string>({f::GradVarName("out1")}));

822
  f::OpDescBind *grad_op1 = block->AllOps()[7];
F
fengjiayi 已提交
823 824 825 826 827 828 829 830 831
  ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));
F
fengjiayi 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845

  EXPECT_EQ(var_to_grad.size(), 5UL);
  EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));
  EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 7));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 7));

  EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
846 847 848 849 850 851 852 853 854 855 856 857
}

TEST(Backward, half_backward) {
  f::ProgramDesc *program_desc = GetNewProgramDesc();
  f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
  f::BlockDescBind *block = program.Block(0);
  auto *op1 = block->AppendOp();
  op1->SetType("minus");
  op1->SetInput("X", {"a"});
  op1->SetInput("Y", {"b"});
  op1->SetOutput("Out", {"out"});

858 859
  auto target = f::VarDescBind("out");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
860
  auto var_to_grad = AppendBackward(program, target, {"b"});
861 862
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");
863
  auto ops = block->AllOps();
864
  ASSERT_EQ(3UL, ops.size());
F
fengjiayi 已提交
865 866 867 868

  EXPECT_EQ(var_to_grad.size(), 1UL);
  EXPECT_EQ(var_to_grad.at("a"),
            f::GradVarInfo(f::GradVarName("a"), 0, forward_len + 1));
869
}