var_conv_2d_op.cc 16.5 KB
Newer Older
K
Kevin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/var_conv_2d_op.h"
#include <vector>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/mklml.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

void VarConv2dOpMaker::Make() {
  AddInput("X",
           "X (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("ROW", "(LoDTensor) the row variable provides lod information");
  AddInput("COLUMN",
           "(LoDTensor) the column variable provides lod information");
  AddInput("W", "W (Tensor), the filter.");
  AddAttr<int>("InputChannel", "the input filter num").SetDefault(1);
  AddAttr<int>("OutputChannel", "the output filter num").SetDefault(1);
  AddAttr<int>("StrideH", "the height of Stride").SetDefault(1);
  AddAttr<int>("StrideW", "the width of Stride").SetDefault(1);
  AddAttr<int>("KernelH", "the height of Kernel").SetDefault(1);
  AddAttr<int>("KernelW", "the width of Kernel").SetDefault(1);

  AddOutput("Out", "(LoDTensor, default LoDTensor<float>) Output variable");
  AddOutput("Col",
            "(LoDTensor, default LoDTensor<float>) the intermediate result "
            "variable");

  AddComment(R"DOC(
    Var Size Conv Operator

    This operator calculate Out = \sigma \left ( W * X + b \right ), 
    only support 2-D for X.
    
    NOTE: only support 'float32' data type now.

  )DOC");
}

void VarConv2dOP::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "X(Input) of VarConv2dOP should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("W"),
                 "W(Input) of VarConv2dOP should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("ROW"),
                 "Input(ROW) of VarConv2dOP should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("COLUMN"),
                 "Input(COLUMN) of VarConv2dOP should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of VarConv2dOP should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Col"),
                 "Col(Output) of VarConv2dOP should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    "The rank of X(Input) can't be less than 2.");

  auto w_dims = ctx->GetInputDim("W");

  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "W should be 2-D tensor");
  int output_channel = ctx->Attrs().Get<int>("OutputChannel");
  int input_channel = ctx->Attrs().Get<int>("InputChannel");
  int kernel_h = ctx->Attrs().Get<int>("KernelH");
  int kernel_w = ctx->Attrs().Get<int>("KernelW");
  PADDLE_ENFORCE_EQ(w_dims[0], output_channel,
                    "W dim[0] should be equal to OutputChannel");
  PADDLE_ENFORCE_EQ(
      w_dims[1], input_channel * kernel_h * kernel_w,
      "W dim[1] should be equal to InputChannel * StrideH * StrideW");

  if (ctx->IsRuntime()) {
    framework::Variable* x_var =
        boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
    const auto& x_lod = x_var->Get<LoDTensor>().lod();
    PADDLE_ENFORCE(!x_lod.empty(), "The Input(X) must hold lod info.");

    PADDLE_ENFORCE_GE(x_lod.size(), 1, "The Input(X)'s lod info is corrupted.");
    PADDLE_ENFORCE_EQ(
        x_dims[0], static_cast<int64_t>(x_lod[0].back()),
        "The Input(X)'s lod info mismatches the actual tensor shape.");

    framework::Variable* row_var =
        boost::get<framework::Variable*>(ctx->GetInputVarPtrs("ROW")[0]);
    const auto& row_lod = row_var->Get<LoDTensor>().lod();
    PADDLE_ENFORCE(!row_lod.empty(), "The Input(ROW) must hold lod info.");

    framework::Variable* col_var =
        boost::get<framework::Variable*>(ctx->GetInputVarPtrs("COLUMN")[0]);
    const auto& col_lod = col_var->Get<LoDTensor>().lod();
    PADDLE_ENFORCE(!col_lod.empty(), "The Input(COLUMN) must hold lod info.");
  } else {
    std::vector<int64_t> out_dims_vec{-1};
    out_dims_vec.push_back(1);
    std::vector<int64_t> col_dims_vec{-1};
    col_dims_vec.push_back(1);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
    ctx->SetOutputDim("Col", framework::make_ddim(col_dims_vec));
  }
}

template <typename DeviceContext, typename T>
class CPUVarConv2dOPKernel : public framework::OpKernel<T> {
 public:
  void Im2Col(const framework::ExecutionContext& ctx, const LoDTensor& input,
              LoDTensor* col) const {
    int input_channel = ctx.Attr<int>("InputChannel");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    int batch = input.lod()[0].size() - 1;
    const auto& bottom_offset = input.lod()[0];
    // 2-D lod info.
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];

    // top offset is the whole size of each data sample
    std::vector<size_t> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (int b = 0; b < batch; ++b) {
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      int top_im_x = 0;
      if (width == 0) {
        top_im_x = 0;
      } else {
        top_im_x = (width - 1) / stride_w + 1;
      }
      int top_im_y = 0;
      if (height == 0) {
        top_im_y = 0;
      } else {
        top_im_y = (height - 1) / stride_h + 1;
      }
      int top_x = top_im_y * top_im_x;
      int top_y = input_channel * kernel_h * kernel_w;
      top_size += top_y * top_x;
      top_offset.push_back(top_size);
    }
    framework::LoD col_lod;
    col_lod.push_back(top_offset);
    col->set_lod(col_lod);
    std::vector<int64_t> col_dims_vec{top_size};
    col_dims_vec.push_back(1);
    auto* top_data = col->mutable_data<T>(framework::make_ddim(col_dims_vec),
                                          ctx.GetPlace());
    auto* bottom_data = input.data<T>();

    int kernel_win_size = kernel_h * kernel_w;
    int half_kernel_h = kernel_h / 2;
    int half_kernel_w = kernel_w / 2;
    for (int b = 0; b < batch; ++b) {
      int t_offset = top_offset[b];
      int b_offset = bottom_offset[b];
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      if (width == 0 || height == 0) {
        continue;
      }
      int top_im_x = (width - 1) / stride_w + 1;
      int top_im_y = (height - 1) / stride_h + 1;
      int top_x = top_im_y * top_im_x;
      for (int z = 0; z < input_channel; ++z) {
        int row_offset = kernel_win_size * z;
        int im_offset = z * width * height;
        for (int y = 0; y < height; y += stride_h) {
          for (int x = 0; x < width; x += stride_w) {
            int col_offset = x / stride_w + y / stride_h * top_im_x;
            for (int ky = 0; ky < kernel_h; ++ky) {
              for (int kx = 0; kx < kernel_w; ++kx) {
                int im_y = y + ky - half_kernel_h;
                int im_x = x + kx - half_kernel_w;
                if (im_x >= 0 && im_x < width && im_y >= 0 && im_y < height) {
                  top_data[t_offset +
                           (row_offset + ky * kernel_w + kx) * top_x +
                           col_offset] =
                      bottom_data[b_offset + im_offset + im_y * width + im_x];
                } else {
                  top_data[t_offset +
                           (row_offset + ky * kernel_w + kx) * top_x +
                           col_offset] = 0;
                }
              }
            }
          }
        }
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* bottom = ctx.Input<LoDTensor>("X");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    auto* w = ctx.Input<Tensor>("W");
    auto* top = ctx.Output<LoDTensor>("Out");
    auto* col = ctx.Output<LoDTensor>("Col");

    int output_channel = ctx.Attr<int>("OutputChannel");
    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    Im2Col(ctx, *bottom, col);
    int batch = bottom->lod()[0].size() - 1;
    const auto& col_offset = col->lod()[0];
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];
    std::vector<size_t> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (int b = 0; b < batch; ++b) {
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      int top_im_x = 0;
      if (width == 0) {
        top_im_x = 0;
      } else {
        top_im_x = (width - 1) / stride_w + 1;
      }
      int top_im_y = 0;
      if (height == 0) {
        top_im_y = 0;
      } else {
        top_im_y = (height - 1) / stride_h + 1;
      }
      int top_im_size = top_im_y * top_im_x;
      top_size += output_channel * top_im_size;
      top_offset.push_back(top_size);
    }

    framework::LoD top_lod;
    top_lod.push_back(top_offset);

    top->set_lod(top_lod);
    std::vector<int64_t> top_dims_vec{top_size};
    top_dims_vec.push_back(1);
    auto* top_data = top->mutable_data<T>(framework::make_ddim(top_dims_vec),
                                          ctx.GetPlace());

    auto* w_data = w->data<T>();
    auto* col_data = col->data<T>();

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    for (int b = 0; b < batch; ++b) {
      int top_im_size = (top_offset[b + 1] - top_offset[b]) / output_channel;
      if (top_im_size == 0) {
        continue;
      }

      blas.GEMM(CblasNoTrans, CblasNoTrans, output_channel, top_im_size,
                input_channel * kernel_h * kernel_w, 1.0, w_data,
                col_data + col_offset[b], 0.0, top_data + top_offset[b]);
    }
  }
};

void VarConv2dOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("W"),
                 "Input(W) of SequencePadGradOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                 "Input(Out@GRAD) of SequencePadGradOp should not be null.");

  if (ctx->HasOutput(framework::GradVarName("X"))) {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
  }
}

template <typename DeviceContext, typename T>
class CPUVarConv2dOPGradKernel : public framework::OpKernel<T> {
 public:
  void Im2ColGrad(const framework::ExecutionContext& ctx, T* top_diff) const {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    auto* col = ctx.Input<LoDTensor>("Col");

    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    memset(dx_data, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));

    const auto& bottom_offset = x->lod()[0];
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];
    const auto& top_offset = col->lod()[0];
    int batch = x->lod()[0].size() - 1;
    int kernel_win_size = kernel_h * kernel_w;
    int half_kernel_h = kernel_h / 2;
    int half_kernel_w = kernel_w / 2;
    for (int b = 0; b < batch; ++b) {
      int t_offset = top_offset[b];
      int b_offset = bottom_offset[b];
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      if (width == 0 || height == 0) {
        continue;
      }
      int top_im_x = (width - 1) / stride_w + 1;
      int top_im_y = (height - 1) / stride_h + 1;
      int top_x = top_im_y * top_im_x;
      for (int z = 0; z < input_channel; ++z) {
        int row_offset = kernel_win_size * z;
        int im_offset = z * width * height;
        for (int y = 0; y < height; y += stride_h) {
          for (int x = 0; x < width; x += stride_w) {
            int col_offset = x / stride_w + y / stride_h * top_im_x;
            for (int ky = 0; ky < kernel_h; ++ky) {
              for (int kx = 0; kx < kernel_w; ++kx) {
                int im_y = y + ky - half_kernel_h;
                int im_x = x + kx - half_kernel_w;
                if (im_x >= 0 && im_x < width && im_y >= 0 && im_y < height) {
                  dx_data[b_offset + im_offset + im_y * width + im_x] +=
                      top_diff[t_offset +
                               (row_offset + ky * kernel_w + kx) * top_x +
                               col_offset];
                }
              }
            }
          }
        }
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* w = ctx.Input<Tensor>("W");
    auto* col = ctx.Input<LoDTensor>("Col");
    auto* out = ctx.Input<LoDTensor>("Out");

    int output_channel = ctx.Attr<int>("OutputChannel");
    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");

    auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto* d_w = ctx.Output<Tensor>(framework::GradVarName("W"));

    Tensor col_grad;
    col_grad.Resize(col->dims());
    auto* col_diff = col_grad.mutable_data<T>(ctx.GetPlace());
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto* w_diff = d_w->mutable_data<T>(ctx.GetPlace());

    memset(dx_data, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));
    memset(w_diff, 0.0, w->dims()[0] * w->dims()[1] * sizeof(T));
    memset(col_diff, 0.0, col->dims()[0] * col->dims()[1] * sizeof(T));
    auto* top_diff = d_out->data<T>();
    auto* w_data = w->data<T>();
    auto* col_data = col->data<T>();
    int batch = x->lod()[0].size() - 1;
    const auto& top_offset = out->lod()[0];
    const auto& col_offset = col->lod()[0];
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    for (int b = 0; b < batch; ++b) {
      int top_im_size = (top_offset[b + 1] - top_offset[b]) / output_channel;
      if (top_im_size == 0) {
        continue;
      }

      blas.GEMM(CblasTrans, CblasNoTrans, input_channel * kernel_h * kernel_w,
                top_im_size, output_channel, 1.0, w_data,
                top_diff + top_offset[b], 1.0, col_diff + col_offset[b]);

      blas.GEMM(CblasNoTrans, CblasTrans, output_channel,
                input_channel * kernel_h * kernel_w, top_im_size, 1.0,
                top_diff + top_offset[b], col_data + col_offset[b], 1.0,
                w_diff);
    }
    Im2ColGrad(ctx, col_diff);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plt = paddle::platform;
namespace frm = paddle::framework;
H
hong 已提交
419 420 421 422
REGISTER_OPERATOR(
    var_conv_2d, ops::VarConv2dOP, ops::VarConv2dOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
K
Kevin 已提交
423 424 425 426 427 428 429 430 431 432 433
REGISTER_OPERATOR(var_conv_2d_grad, ops::VarConv2dOpGrad);

REGISTER_OP_CPU_KERNEL(var_conv_2d,
                       ops::CPUVarConv2dOPKernel<plt::CPUDeviceContext, float>);
//     ops::CPUVarConv2dOPKernel<plt::CPUDeviceContext,
//                                       double>
REGISTER_OP_CPU_KERNEL(
    var_conv_2d_grad,
    ops::CPUVarConv2dOPGradKernel<plt::CPUDeviceContext, float>);
//     ops::CPUVarConv2dOPGradKernel<plt::CPUDeviceContext,
//                                           double>