elementwise_op_broadcast.cu.h 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.1 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.1
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
18
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
19

20 21 22
namespace paddle {
namespace operators {

23 24
namespace kps = paddle::operators::kernel_primitives;

25 26 27 28 29 30 31 32 33
struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(bool &, std::vector<DimVector> &, DimVector &,
                               int, int);
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
34 35
  // To compensate the lackage of input_tensors` dimension with input variable
  // 'axis'
36 37 38 39 40 41 42 43 44 45 46 47
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
            PADDLE_THROW(platform::errors::InvalidArgument(
48 49 50
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
51 52 53 54 55 56 57 58 59 60 61
                in_idx + 1, axis + 1, out_dims[axis], in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
            PADDLE_THROW(platform::errors::InvalidArgument(
62 63 64
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
65 66 67 68 69 70 71 72 73 74
                in_idx + 1, in_idx + 1, out_dims[in_idx], in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

  template <typename MergeFunctor>
75
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] =
          std::accumulate(vec->begin() + l_idx, vec->begin() + m_idx, 1,
                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

 public:
  explicit DimensionsTransform(
      const std::vector<const framework::Tensor *> &ins,
      const framework::DDim &dims, int axis) {
    const int N = ins.size();
    dim_size = dims.size();
    out_dims = framework::vectorize<int64_t>(dims);
    in_dims.resize(N);
    for (int j = 0; j < N; ++j) {
      in_dims[j] = framework::vectorize<int64_t>(ins[j]->dims());
    }
    InputDimensionsExtend(N, axis);

    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out, int i, int num) {
      for (int j = 1; j < num; ++j) {
        equal = (in_dims[0][i] == in_dims[j][i]) ? true : false;
      }
    };
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out, int i, int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
          equal = in_dims[j][i] == out[i];
        }
      }
    };
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears.
    MergeFunctor merge_ptr = merge_sequential_dims;
144
    MergeDimensions<MergeFunctor>(merge_ptr, N);
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

    int min_idx = 0;
    int min_val = std::accumulate(in_dims[0].begin(), in_dims[0].end(), 1,
                                  std::multiplies<int64_t>());
    for (int j = 1; j < N; ++j) {
      int temp = std::accumulate(in_dims[j].begin(), in_dims[j].end(), 1,
                                 std::multiplies<int64_t>());
      min_val = min_val > temp ? temp : min_val;
      min_idx = min_val == temp ? j : min_idx;
    }
    std::swap(in_dims[0], in_dims[min_idx]);

    // To Merge the dimension of input_tensors while the consequtive
    // 1-value-dimensions appears.
    merge_ptr = merge_sequential_one_dims;
160
    MergeDimensions<MergeFunctor>(merge_ptr, N);
161 162 163 164
    std::swap(in_dims[min_idx], in_dims[0]);
  }
};

165
template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
166 167
void LaunchBroadcastElementwiseCudaKernel(
    const platform::CUDADeviceContext &ctx,
168 169
    const std::vector<const framework::Tensor *> &ins,
    std::vector<framework::Tensor *> *outs, int axis, Functor func) {
170 171 172 173 174 175 176 177 178 179 180 181
  std::vector<const pten::DenseTensor *> pt_inputs;
  std::vector<pten::DenseTensor *> pt_outputs;
  // TODO(YuanRisheng) *_tmp for cache DenseTensor, because the temporary
  // DenseTensor obj
  // generated by MakePtenDenseTensor can be destroyed when exits loop. *_tmp
  // can be deleted
  // when DenseTensor support copy constructor.
  std::vector<std::unique_ptr<pten::DenseTensor>> pt_inputs_tmp;
  std::vector<std::unique_ptr<pten::DenseTensor>> pt_outputs_tmp;
  for (auto in : ins) {
    pt_inputs_tmp.emplace_back(
        std::move(paddle::experimental::MakePtenDenseTensor(*in)));
182
  }
183 184 185 186 187 188
  for (auto out : *outs) {
    pt_outputs_tmp.emplace_back(
        std::move(paddle::experimental::MakePtenDenseTensor(*out)));
  }
  for (int i = 0; i < pt_inputs_tmp.size(); i++) {
    pt_inputs.push_back(pt_inputs_tmp[i].get());
189
  }
190 191 192 193 194
  for (int i = 0; i < pt_outputs_tmp.size(); i++) {
    pt_outputs.push_back(pt_outputs_tmp[i].get());
  }
  pten::LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT>(
      ctx, pt_inputs, &pt_outputs, axis, func);
195 196
}

197
template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
198
void LaunchElementwiseCudaKernel(
199
    const platform::CUDADeviceContext &cuda_ctx,
200
    const std::vector<const framework::Tensor *> &ins,
201
    std::vector<framework::Tensor *> *outs, int axis, Functor func) {
202 203 204 205 206 207 208 209 210 211 212 213
  std::vector<const pten::DenseTensor *> pt_inputs;
  std::vector<pten::DenseTensor *> pt_outputs;
  // TODO(YuanRisheng) *_tmp for cache DenseTensor, because the temporary
  // DenseTensor obj
  // generated by MakePtenDenseTensor can be destroyed when exits loop. *_tmp
  // can be deleted
  // when DenseTensor support copy constructor.
  std::vector<std::unique_ptr<pten::DenseTensor>> pt_inputs_tmp;
  std::vector<std::unique_ptr<pten::DenseTensor>> pt_outputs_tmp;
  for (auto in : ins) {
    pt_inputs_tmp.emplace_back(
        std::move(paddle::experimental::MakePtenDenseTensor(*in)));
214
  }
215 216 217 218 219 220 221 222 223
  for (auto out : *outs) {
    pt_outputs_tmp.emplace_back(
        std::move(paddle::experimental::MakePtenDenseTensor(*out)));
  }
  for (int i = 0; i < pt_inputs_tmp.size(); i++) {
    pt_inputs.push_back(pt_inputs_tmp[i].get());
  }
  for (int i = 0; i < pt_outputs_tmp.size(); i++) {
    pt_outputs.push_back(pt_outputs_tmp[i].get());
224
  }
225 226
  pten::LaunchElementwiseCudaKernel<ET, InT, OutT>(cuda_ctx, pt_inputs,
                                                   &pt_outputs, axis, func);
227 228
}

229 230
}  // namespace operators
}  // namespace paddle