test_elementwise_mul_op.py 5.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21 22


G
gongweibao 已提交
23
class ElementwiseMulOp(OpTest):
24 25 26
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
27 28
            'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64")
29 30 31 32 33 34 35
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
36
        self.check_grad(['X', 'Y'], 'Out')
37 38

    def test_check_grad_ingore_x(self):
39
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
40 41

    def test_check_grad_ingore_y(self):
42
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
43 44


45 46 47 48 49 50 51 52 53 54
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float32),
            'Y': np.random.rand(1).astype(np.float32)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


G
gongweibao 已提交
55
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
56 57 58
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
59 60
            'X': np.random.random((32, )).astype("float64"),
            'Y': np.random.random((32, )).astype("float64")
61 62 63 64
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}


G
gongweibao 已提交
65
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
66 67 68
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
69 70
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(2).astype(np.float64)
71 72 73 74 75 76 77 78
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
        }


G
gongweibao 已提交
79
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
80 81 82
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
83 84
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(3).astype(np.float64)
85 86 87 88 89 90 91 92
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
        }


G
gongweibao 已提交
93
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
94 95 96
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
97 98
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(4).astype(np.float64)
99 100 101 102 103 104 105
        }

        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
        }


G
gongweibao 已提交
106
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
107 108 109
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
110 111
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(3, 4).astype(np.float64)
112 113 114 115 116 117 118 119
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
        }


120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class TestElementWiseMulSelectedRows(OpTest):
    def setUp(self):
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.feature = 12
        self.height = 100
        self.input_shape = (len(self.rows), self.feature)

    def prepare_input(self, scope, place):
        self.input = {
            "X": np.random.random(self.input_shape).astype("float32"),
            "Y": np.random.random(self.input_shape).astype("float32")
        }

        def init_input(in_name):
            x_selected_rows = scope.var(in_name).get_selected_rows()
            x_selected_rows.set_height(self.height)
            x_selected_rows.set_rows(self.rows)
            x_array = self.input[in_name]
            x_tensor = x_selected_rows.get_tensor()
            x_tensor.set(x_array, place)

        init_input("X")
        init_input("Y")

    def create_out_selected_row(self, scope):
        return scope.var('Out').get_selected_rows()

    def check_result(self, out_selected_rows):
        assert out_selected_rows.height() == self.height
        assert out_selected_rows.rows() == self.rows
        out_tensor = np.array(out_selected_rows.get_tensor())
        assert out_tensor.shape == self.input_shape

    def check_with_place(self, place):
        scope = core.Scope()
        self.prepare_input(scope, place)

        out_selected_rows = self.create_out_selected_row(scope)
        out_selected_rows.set_height(0)
        out_selected_rows.set_rows([])

        elementwise_mul = Operator("elementwise_mul", X='X', Y='Y', Out='Out')
        elementwise_mul.run(scope, place)
        self.check_result(out_selected_rows)

    def test_elewisemul_with_selected_rows_input(self):
        places = [core.CPUPlace()]
        for place in places:
            self.check_with_place(place)


171 172
if __name__ == '__main__':
    unittest.main()