wmt16.py 9.9 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""

from __future__ import print_function

import os
import six
import tarfile
import numpy as np
from collections import defaultdict

import paddle
from paddle.io import Dataset
import paddle.compat as cpt
28
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
29

30 31
__all__ = []

K
Kaipeng Deng 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
DATA_URL = ("http://paddlemodels.bj.bcebos.com/wmt/wmt16.tar.gz")
DATA_MD5 = "0c38be43600334966403524a40dcd81e"

TOTAL_EN_WORDS = 11250
TOTAL_DE_WORDS = 19220

START_MARK = "<s>"
END_MARK = "<e>"
UNK_MARK = "<unk>"


class WMT16(Dataset):
    """
    Implementation of `WMT16 <http://www.statmt.org/wmt16/>`_ test dataset.
    ACL2016 Multimodal Machine Translation. Please see this website for more
    details: http://www.statmt.org/wmt16/multimodal-task.html#task1

    If you use the dataset created for your task, please cite the following paper:
    Multi30K: Multilingual English-German Image Descriptions.

    .. code-block:: text

        @article{elliott-EtAl:2016:VL16,
         author    = {{Elliott}, D. and {Frank}, S. and {Sima"an}, K. and {Specia}, L.},
         title     = {Multi30K: Multilingual English-German Image Descriptions},
         booktitle = {Proceedings of the 6th Workshop on Vision and Language},
         year      = {2016},
         pages     = {70--74},
         year      = 2016
        }

    Args:
        data_file(str): path to data tar file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train', 'test' or 'val'. Default 'train'
        src_dict_size(int): word dictionary size for source language word. Default -1.
        trg_dict_size(int): word dictionary size for target language word. Default -1.
        lang(str): source language, 'en' or 'de'. Default 'en'.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True

    Returns:
74 75 76 77
        Dataset: instance of WMT16 dataset. The instance of dataset has 3 fields:
            - src_ids (np.array) - The sequence of token ids of source language.
            - trg_ids (np.array) - The sequence of token ids of target language.
            - trg_ids_next (np.array) - The next sequence of token ids of target language.
K
Kaipeng Deng 已提交
78 79 80 81 82

    Examples:

        .. code-block:: python

83 84
            import paddle
            from paddle.text.datasets import WMT16
K
Kaipeng Deng 已提交
85

86 87 88
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
89

90 91
                def forward(self, src_ids, trg_ids, trg_ids_next):
                    return paddle.sum(src_ids), paddle.sum(trg_ids), paddle.sum(trg_ids_next)
K
Kaipeng Deng 已提交
92

93
            paddle.disable_static()
K
Kaipeng Deng 已提交
94

95
            wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50)
K
Kaipeng Deng 已提交
96

97 98 99 100 101
            for i in range(10):
                src_ids, trg_ids, trg_ids_next = wmt16[i]
                src_ids = paddle.to_tensor(src_ids)
                trg_ids = paddle.to_tensor(trg_ids)
                trg_ids_next = paddle.to_tensor(trg_ids_next)
K
Kaipeng Deng 已提交
102

103 104 105
                model = SimpleNet()
                src_ids, trg_ids, trg_ids_next = model(src_ids, trg_ids, trg_ids_next)
                print(src_ids.numpy(), trg_ids.numpy(), trg_ids_next.numpy())
K
Kaipeng Deng 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 src_dict_size=-1,
                 trg_dict_size=-1,
                 lang='en',
                 download=True):
        assert mode.lower() in ['train', 'test', 'val'], \
            "mode should be 'train', 'test' or 'val', but got {}".format(mode)
        self.mode = mode.lower()

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(
                data_file, DATA_URL, DATA_MD5, 'wmt16', download)

        self.lang = lang
        assert src_dict_size > 0, "dict_size should be set as positive number"
        assert trg_dict_size > 0, "dict_size should be set as positive number"
        self.src_dict_size = min(src_dict_size, (TOTAL_EN_WORDS if lang == "en"
                                                 else TOTAL_DE_WORDS))
        self.trg_dict_size = min(trg_dict_size, (TOTAL_DE_WORDS if lang == "en"
                                                 else TOTAL_EN_WORDS))

        # load source and target word dict
        self.src_dict = self._load_dict(lang, src_dict_size)
        self.trg_dict = self._load_dict("de" if lang == "en" else "en",
                                        trg_dict_size)

        # load data
        self.data = self._load_data()

    def _load_dict(self, lang, dict_size, reverse=False):
        dict_path = os.path.join(paddle.dataset.common.DATA_HOME,
                                 "wmt16/%s_%d.dict" % (lang, dict_size))
145 146 147 148 149
        dict_found = False
        if os.path.exists(dict_path):
            with open(dict_path, "rb") as d:
                dict_found = len(d.readlines()) == dict_size
        if not dict_found:
K
Kaipeng Deng 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            self._build_dict(dict_path, dict_size, lang)

        word_dict = {}
        with open(dict_path, "rb") as fdict:
            for idx, line in enumerate(fdict):
                if reverse:
                    word_dict[idx] = cpt.to_text(line.strip())
                else:
                    word_dict[cpt.to_text(line.strip())] = idx
        return word_dict

    def _build_dict(self, dict_path, dict_size, lang):
        word_dict = defaultdict(int)
        with tarfile.open(self.data_file, mode="r") as f:
            for line in f.extractfile("wmt16/train"):
                line = cpt.to_text(line)
                line_split = line.strip().split("\t")
                if len(line_split) != 2: continue
                sen = line_split[0] if self.lang == "en" else line_split[1]
                for w in sen.split():
                    word_dict[w] += 1

        with open(dict_path, "wb") as fout:
            fout.write(
                cpt.to_bytes("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK)))
            for idx, word in enumerate(
                    sorted(
                        six.iteritems(word_dict),
                        key=lambda x: x[1],
                        reverse=True)):
                if idx + 3 == dict_size: break
                fout.write(cpt.to_bytes(word[0]))
                fout.write(cpt.to_bytes('\n'))

    def _load_data(self):
        # the index for start mark, end mark, and unk are the same in source
        # language and target language. Here uses the source language
        # dictionary to determine their indices.
        start_id = self.src_dict[START_MARK]
        end_id = self.src_dict[END_MARK]
        unk_id = self.src_dict[UNK_MARK]

        src_col = 0 if self.lang == "en" else 1
        trg_col = 1 - src_col

        self.src_ids = []
        self.trg_ids = []
        self.trg_ids_next = []
        with tarfile.open(self.data_file, mode="r") as f:
            for line in f.extractfile("wmt16/{}".format(self.mode)):
                line = cpt.to_text(line)
                line_split = line.strip().split("\t")
                if len(line_split) != 2:
                    continue
                src_words = line_split[src_col].split()
                src_ids = [start_id] + [
                    self.src_dict.get(w, unk_id) for w in src_words
                ] + [end_id]

                trg_words = line_split[trg_col].split()
                trg_ids = [self.trg_dict.get(w, unk_id) for w in trg_words]

                trg_ids_next = trg_ids + [end_id]
                trg_ids = [start_id] + trg_ids

                self.src_ids.append(src_ids)
                self.trg_ids.append(trg_ids)
                self.trg_ids_next.append(trg_ids_next)

    def __getitem__(self, idx):
        return (np.array(self.src_ids[idx]), np.array(self.trg_ids[idx]),
                np.array(self.trg_ids_next[idx]))

    def __len__(self):
        return len(self.src_ids)

    def get_dict(self, lang, reverse=False):
        """
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        return the word dictionary for the specified language.

        Args:
            lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.
            reverse(bool): If reverse is set to False, the returned python
                           dictionary will use word as key and use index as value.
                           If reverse is set to True, the returned python
                           dictionary will use index as key and word as value.

        Returns:
            dict: The word dictionary for the specific language.

        Examples:
    
            .. code-block:: python
    
                from paddle.text.datasets import WMT16
                wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50)
                en_dict = wmt16.get_dict('en')
K
Kaipeng Deng 已提交
249

250
        """
K
Kaipeng Deng 已提交
251 252 253 254 255 256 257
        dict_size = self.src_dict_size if lang == self.lang else self.trg_dict_size

        dict_path = os.path.join(paddle.dataset.common.DATA_HOME,
                                 "wmt16/%s_%d.dict" % (lang, dict_size))
        assert os.path.exists(dict_path), "Word dictionary does not exist. "
        "Please invoke paddle.dataset.wmt16.train/test/validation first "
        "to build the dictionary."
258
        return self._load_dict(lang, dict_size)