dist_loader.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import abc
import numpy as np
import paddle
18
from .utils import to_list
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
from paddle.io import DataLoader, DistributedBatchSampler


class DistributedDataLoader(metaclass=abc.ABCMeta):
    def __init__(self,
                 dataset,
                 batch_size=1,
                 epochs=1,
                 data_parallel_world_size=None,
                 data_parallel_rank=None,
                 drop_last=False):
        self.dataset = dataset
        self.batch_size = batch_size
        self.epochs = epochs
        self.data_parallel_world_size = data_parallel_world_size
        self.data_parallel_rank = data_parallel_rank
        self.drop_lost = drop_last
        if data_parallel_world_size is not None:
            assert batch_size % data_parallel_world_size == 0

    @abc.abstractmethod
    def __iter__(self):
        raise NotImplementedError

    @abc.abstractmethod
    def __next__(self):
        raise NotImplementedError


class NonIterableGeneratorLoader(DistributedDataLoader):
    def __init__(self,
                 dataset,
                 feed_list,
                 places,
                 batch_size=1,
                 epochs=1,
55
                 steps_per_epoch=None,
56 57
                 data_parallel_world_size=None,
                 data_parallel_rank=None,
58 59
                 drop_last=False,
                 inputs=[]):
60 61 62 63 64 65 66
        self.feed_list = feed_list
        self.places = places
        self.steps_per_epoch = steps_per_epoch
        super(NonIterableGeneratorLoader, self).__init__(
            dataset, batch_size, epochs, data_parallel_world_size,
            data_parallel_rank, drop_last)
        self._inner_dataloader = self._create_inner_dataloader()
67 68
        self._steps = self._infer_steps()
        self._inputs = inputs
69 70 71 72 73 74 75

    def __iter__(self):
        self._cur_step = 0
        self._inner_dataloader.start()
        return self

    def __next__(self):
76
        if self._cur_step < self._steps:
77 78 79 80 81
            self._cur_step += 1
        else:
            self._inner_dataloader.reset()
            raise StopIteration

82 83 84 85 86 87 88 89 90 91 92
    def _infer_steps(self):
        if self.steps_per_epoch is not None:
            return self.steps_per_epoch
        try:
            steps_per_epoch = len(self.dataset) // self.batch_size
        except:
            raise ValueError(
                "Pleace set `steps_per_epoch` or implement `__len__` methond in dataset class."
            )
        return steps_per_epoch

93 94 95 96
    def _create_inner_dataloader(self):
        def data_generator():
            batch_data = None
            for step, data in enumerate(self.dataset):
97 98 99
                if not isinstance(data, list):
                    data = to_list(data)

100 101
                if batch_data is None:
                    batch_data = [[] for i in range(len(data))]
102 103 104 105

                for idx in range(len(data)):
                    batch_data[idx].append(data[idx])

106
                if (step + 1) % self.batch_size == 0:
107
                    yield batch_data
108 109 110 111 112 113
                    batch_data = None

        dataloader = paddle.fluid.io.DataLoader.from_generator(
            feed_list=self.feed_list, capacity=70, iterable=False)
        dataloader.set_batch_generator(data_generator, self.places)
        return dataloader