multi_devices_graph_builder.cc 14.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
15 16
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
17
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
20
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
22 23 24 25

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
26

Y
Yu Yang 已提交
27 28 29
#include <string>
#include <vector>

Y
Yu Yang 已提交
30 31 32
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
33 34

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
35 36 37 38
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
39
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
40
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
41 42 43
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
44
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
45
      strategy_(strategy) {
Y
Yu Yang 已提交
46 47 48 49 50
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
51
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
52 53
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
54
      local_scopes_(local_scopes),
Y
yuyang18 已提交
55
      strategy_(strategy) {
Y
Yu Yang 已提交
56
#endif
Y
Yu Yang 已提交
57 58 59 60 61
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
62 63
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
64 65
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
66
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
67 68
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
69

Y
Yu Yang 已提交
70 71 72
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
73 74 75
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
76 77
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
78 79 80
  }
}

T
typhoonzero 已提交
81 82 83 84 85 86
bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
                                            OpDesc *send_op) const {
  if (send_op == nullptr) {
    return false;
  }

Y
Yu Yang 已提交
87 88 89 90 91
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
                    const std::vector<std::string> &sendvars) -> bool {
T
typhoonzero 已提交
92 93 94
    for (auto &var : opvars) {
      if (var.find(".block") != std::string::npos &&
          std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) {
Y
Yu Yang 已提交
95
        return true;
T
typhoonzero 已提交
96 97
      }
    }
Y
Yu Yang 已提交
98
    return false;
T
typhoonzero 已提交
99 100 101 102 103 104 105 106 107 108
  };

  if (op.Type() == "split") {
    return checker(op.OutputArgumentNames(), send_op->InputArgumentNames());
  } else if (op.Type() == "concat") {
    return checker(op.InputArgumentNames(), send_op->OutputArgumentNames());
  }
  return false;
}

Y
Yu Yang 已提交
109 110
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
111 112 113 114
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
115

Y
Yu Yang 已提交
116
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
117
  SSAGraph &result = *graph;
C
chengduoZH 已提交
118
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
119 120 121 122 123

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
124

T
typhoonzero 已提交
125
  // Find "send" op first for split is in front of send.
Y
Yu Yang 已提交
126
  OpDesc *send_op = GetSendOpDesc(program);
T
typhoonzero 已提交
127

C
chengduoZH 已提交
128 129 130 131 132 133
  size_t cur_device_id = 0;
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
134 135
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yu Yang 已提交
136 137 138 139
    if (op->Type() == "send") {
      // append send op if program is distributed trainer main program.
      // always use the first device
      CreateSendOp(&result, *op);
T
typhoonzero 已提交
140 141
    } else if (IsDistTrainOp(*op, send_op)) {
      CreateComputationalOps(&result, *op, 1);
Y
Yu Yang 已提交
142
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
143
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
144 145
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
146 147
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
148
      is_forwarding = false;
Y
Yu Yang 已提交
149
    } else {
C
chengduoZH 已提交
150 151 152 153 154 155 156 157 158
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
159
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
160
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
161
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
162 163 164 165 166 167
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
          auto &backward_vars = boost::get<std::vector<std::string>>(
              op->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
          for (auto &og : backward_vars) {
Y
yuyang18 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
            switch (strategy_.reduce_) {
              case BuildStrategy::ReduceStrategy::kReduce:
                CreateReduceOp(&result, og, cur_device_id);
                var_name_on_devices[cur_device_id].emplace(og);
                bcast_var_name_set[cur_device_id].emplace(
                    og.substr(0, og.size() - strlen(kGradVarSuffix)));
                cur_device_id = (cur_device_id + 1) % places_.size();
                break;
              case BuildStrategy::ReduceStrategy::kAllReduce:
                if (IsSparseGradient(var_types, og)) {
                  CreateReduceOp(&result, og, 0);
                  CreateBroadcastOp(&result, og, 0);
                } else {
                  InsertNCCLAllReduceOp(&result, og);
                }
                break;
C
chengduoZH 已提交
184
            }
Y
Yu Yang 已提交
185 186 187 188 189 190
          }
        }
      }
    }
  }

C
chengduoZH 已提交
191 192 193 194 195 196 197
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
198 199 200 201 202
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
203

Y
Yu Yang 已提交
204 205 206 207 208
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
209 210 211 212 213 214
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
  }

Y
Yu Yang 已提交
215
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
216 217
}

C
fix ci  
chengduoZH 已提交
218 219 220 221 222 223 224 225
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
226 227
}

C
chengduoZH 已提交
228 229
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
230
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
231 232 233 234 235 236 237
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
238
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
239 240 241
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
242
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
262 263 264 265 266 267 268 269 270
OpDesc *MultiDevSSAGraphBuilder::GetSendOpDesc(
    const ProgramDesc &program) const {
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send") {
      return op;
    }
  }
  return nullptr;
}
Y
Yu Yang 已提交
271 272 273 274 275 276 277 278 279 280
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
281 282
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
306 307 308
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
309
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
353 354 355
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
356 357 358
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
359
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
360 361 362
  }
}

C
chengduoZH 已提交
363 364 365
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
Yu Yang 已提交
393 394 395 396 397 398 399 400
void MultiDevSSAGraphBuilder::CreateSendOp(SSAGraph *result,
                                           const OpDesc &op) const {
  auto &p = places_[0];
  auto *s = local_scopes_[0];
  // FIXME(wuyi): send op always copy from GPU 0
  result->ops_.emplace_back(new SendOpHandle(op, s, p));
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
401
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
402 403 404
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
405 406 407 408
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         (static_cast<int>(OpRole::kBackward) |
          static_cast<int>(OpRole::kLoss));
Y
Yu Yang 已提交
409
}
Y
Yu Yang 已提交
410 411 412
}  // namespace details
}  // namespace framework
}  // namespace paddle