ps_gpu_wrapper.h 14.0 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18 19 20 21 22 23 24 25

#include <atomic>
#include <ctime>
#include <map>
#include <memory>
#include <random>
#include <string>
#include <unordered_map>
Y
yaoxuefeng 已提交
26
#include <unordered_set>
T
Thunderbrook 已提交
27
#include <vector>
28 29 30 31
#ifdef PADDLE_WITH_GLOO
#include <gloo/broadcast.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
32
#include "paddle/fluid/distributed/thirdparty/round_robin.h"
Y
yaoxuefeng 已提交
33
#include "paddle/fluid/framework/data_set.h"
T
Thunderbrook 已提交
34 35 36
#include "paddle/fluid/framework/fleet/heter_context.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
Y
yaoxuefeng 已提交
37
#include "paddle/fluid/framework/fleet/heter_ps/mem_pool.h"
T
Thunderbrook 已提交
38 39 40
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable_helper.h"
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
42
#include "paddle/fluid/platform/dynload/nccl.h"
T
Thunderbrook 已提交
43 44
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
45 46 47
#ifdef PADDLE_WITH_PSCORE
#include "paddle/fluid/distributed/service/communicator.h"
#endif
T
Thunderbrook 已提交
48 49 50 51

namespace paddle {
namespace framework {

Y
yaoxuefeng 已提交
52 53 54
#define TYPEALIGN(ALIGNVAL, LEN) \
  (((uint64_t)(LEN) + ((ALIGNVAL)-1)) & ~((uint64_t)((ALIGNVAL)-1)))

T
Thunderbrook 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class PSGPUWrapper {
 public:
  virtual ~PSGPUWrapper() { delete HeterPs_; }

  PSGPUWrapper() {
    HeterPs_ = NULL;
    sleep_seconds_before_fail_exit_ = 300;
  }

  void PullSparse(const paddle::platform::Place& place, const int table_id,
                  const std::vector<const uint64_t*>& keys,
                  const std::vector<float*>& values,
                  const std::vector<int64_t>& slot_lengths,
                  const int hidden_size);
  void PushSparseGrad(const paddle::platform::Place& place, const int table_id,
                      const std::vector<const uint64_t*>& keys,
                      const std::vector<const float*>& grad_values,
                      const std::vector<int64_t>& slot_lengths,
                      const int hidden_size, const int batch_size);
  void CopyKeys(const paddle::platform::Place& place, uint64_t** origin_keys,
                uint64_t* total_keys, const int64_t* gpu_len, int slot_num,
                int total_len);
  void CopyForPull(const paddle::platform::Place& place, uint64_t** gpu_keys,
                   const std::vector<float*>& values,
                   const FeatureValue* total_values_gpu, const int64_t* gpu_len,
                   const int slot_num, const int hidden_size,
                   const int64_t total_length);

  void CopyForPush(const paddle::platform::Place& place,
                   const std::vector<const float*>& grad_values,
                   FeaturePushValue* total_grad_values_gpu,
                   const std::vector<int64_t>& slot_lengths,
                   const int hidden_size, const int64_t total_length,
                   const int batch_size);

90
  void BuildGPUTask(std::shared_ptr<HeterContext> gpu_task);
91 92
  void PreBuildTask(std::shared_ptr<HeterContext> gpu_task);
  void BuildPull(std::shared_ptr<HeterContext> gpu_task);
93 94 95 96
  void LoadIntoMemory(bool is_shuffle);
  void BeginPass();
  void EndPass();
  void start_build_thread();
97
  void pre_build_thread();
98
  void build_task();
99 100 101 102 103 104 105 106 107 108

  void Finalize() {
    VLOG(3) << "PSGPUWrapper Begin Finalize.";
    if (s_instance_ == nullptr) {
      return;
    }
    data_ready_channel_->Close();
    buildcpu_ready_channel_->Close();
    gpu_free_channel_->Close();
    running_ = false;
109 110
    VLOG(3) << "begin stop pre_build_threads_";
    pre_build_threads_.join();
111 112 113 114
    s_instance_ = nullptr;
    VLOG(3) << "PSGPUWrapper Finalize Finished.";
  }

T
Thunderbrook 已提交
115
  void InitializeGPU(const std::vector<int>& dev_ids) {
116
    if (s_instance_ != NULL && is_initialized_ == false) {
T
Thunderbrook 已提交
117
      VLOG(3) << "PSGPUWrapper Begin InitializeGPU";
118
      is_initialized_ = true;
T
Thunderbrook 已提交
119 120 121
      resource_ = std::make_shared<HeterPsResource>(dev_ids);
      resource_->enable_p2p();
      keys_tensor.resize(resource_->total_gpu());
Y
yaoxuefeng 已提交
122 123 124 125 126 127 128 129 130
#ifdef PADDLE_WITH_GLOO
      auto gloo = paddle::framework::GlooWrapper::GetInstance();
      if (gloo->Size() > 1) {
        multi_node_ = 1;
      }
#else
      PADDLE_THROW(
          platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
      if (multi_node_) {
        int dev_size = dev_ids.size();
        // init inner comm
        inner_comms_.resize(dev_size);
        inter_ncclids_.resize(dev_size);
        platform::dynload::ncclCommInitAll(&(inner_comms_[0]), dev_size,
                                           &dev_ids[0]);
// init inter comm
#ifdef PADDLE_WITH_GLOO
        inter_comms_.resize(dev_size);
        if (gloo->Rank() == 0) {
          for (int i = 0; i < dev_size; ++i) {
            platform::dynload::ncclGetUniqueId(&inter_ncclids_[i]);
          }
        }

        PADDLE_ENFORCE_EQ(
            gloo->IsInitialized(), true,
            platform::errors::PreconditionNotMet(
                "You must initialize the gloo environment first to use it."));
        gloo::BroadcastOptions opts(gloo->GetContext());
        opts.setOutput(&inter_ncclids_[0], dev_size);
        opts.setRoot(0);
        gloo::broadcast(opts);

        for (int i = 0; i < dev_size; ++i) {
          platform::dynload::ncclCommInitRank(&inter_comms_[i], gloo->Size(),
                                              inter_ncclids_[i], gloo->Rank());
        }
        node_size_ = gloo->Size();
#else
        PADDLE_THROW(
            platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
      }
Y
yaoxuefeng 已提交
166
      heter_devices_ = dev_ids;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
      data_ready_channel_->Open();
      data_ready_channel_->SetCapacity(3);
      buildcpu_ready_channel_->Open();
      buildcpu_ready_channel_->SetCapacity(3);
      gpu_free_channel_->Open();
      gpu_free_channel_->SetCapacity(1);

      current_task_ = nullptr;
      gpu_free_channel_->Put(current_task_);

      table_id_ = 1;
#ifdef PADDLE_WITH_PSLIB
      table_id_ = 0;
#endif
      // start build cpu&gpu ps thread
      start_build_thread();
T
Thunderbrook 已提交
183 184
    }
  }
Y
yaoxuefeng 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

  void SetSparseSGD(float nonclk_coeff, float clk_coeff, float min_bound,
                    float max_bound, float learning_rate, float initial_g2sum,
                    float initial_range);
  void SetEmbedxSGD(float mf_create_thresholds, float mf_learning_rate,
                    float mf_initial_g2sum, float mf_initial_range,
                    float mf_min_bound, float mf_max_bound);
  void InitializeGPUServer(std::unordered_map<std::string, float> config) {
    float nonclk_coeff = (config.find("nonclk_coeff") == config.end())
                             ? 1.0
                             : config["nonclk_coeff"];
    float clk_coeff =
        (config.find("clk_coeff") == config.end()) ? 1.0 : config["clk_coeff"];
    float min_bound = (config.find("min_bound") == config.end())
                          ? -10000.0
                          : config["min_bound"];
    float max_bound = (config.find("max_bound") == config.end())
                          ? 10000.0
                          : config["max_bound"];
    float learning_rate = (config.find("learning_rate") == config.end())
                              ? 1.0
                              : config["learning_rate"];
    float initial_g2sum = (config.find("initial_g2sum") == config.end())
                              ? 1.0
                              : config["initial_g2sum"];
    float initial_range = (config.find("initial_range") == config.end())
                              ? 1.0
                              : config["initial_range"];

    // mf config settings
    float mf_create_thresholds =
        (config.find("mf_create_thresholds") == config.end())
            ? static_cast<float>(1.0)
            : config["mf_create_thresholds"];
    float mf_learning_rate = (config.find("mf_learning_rate") == config.end())
                                 ? 1.0
                                 : config["mf_learning_rate"];
    float mf_initial_g2sum = (config.find("mf_initial_g2sum") == config.end())
                                 ? 1.0
                                 : config["mf_initial_g2sum"];
    float mf_initial_range = (config.find("mf_initial_range") == config.end())
                                 ? 1.0
                                 : config["mf_initial_range"];
    float mf_min_bound = (config.find("mf_min_bound") == config.end())
                             ? 1.0
                             : config["mf_min_bound"];
    float mf_max_bound = (config.find("mf_max_bound") == config.end())
                             ? 1.0
                             : config["mf_max_bound"];
    for (size_t i = 0; i < heter_devices_.size(); i++) {
235
      PADDLE_ENFORCE_GPU_SUCCESS(cudaSetDevice(heter_devices_[i]));
Y
yaoxuefeng 已提交
236 237 238 239 240 241 242
      this->SetSparseSGD(nonclk_coeff, clk_coeff, min_bound, max_bound,
                         learning_rate, initial_g2sum, initial_range);
      this->SetEmbedxSGD(mf_create_thresholds, mf_learning_rate,
                         mf_initial_g2sum, mf_initial_range, mf_min_bound,
                         mf_max_bound);
    }
  }
243 244 245 246 247 248
  void SetDate(int year, int month, int day) {
    year_ = year;
    month_ = month;
    day_ = day;
  }

Y
yaoxuefeng 已提交
249 250
  void SetDataset(Dataset* dataset) { dataset_ = dataset; }

T
Thunderbrook 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  // PSGPUWrapper singleton
  static std::shared_ptr<PSGPUWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PSGPUWrapper());
    }
    return s_instance_;
  }
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>& GetLocalTable(
      int table_id) {
    return local_tables_[table_id];
  }
  void SetSlotVector(const std::vector<int>& slot_vector) {
    slot_vector_ = slot_vector;
  }

Y
yaoxuefeng 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  void SetSlotOffsetVector(const std::vector<int>& slot_offset_vector) {
    slot_offset_vector_ = slot_offset_vector;
  }

  void SetSlotDimVector(const std::vector<int>& slot_mf_dim_vector) {
    slot_mf_dim_vector_ = slot_mf_dim_vector;
    assert(slot_mf_dim_vector_.size() == slot_vector_.size());
    for (size_t i = 0; i < slot_mf_dim_vector.size(); i++) {
      slot_dim_map_[slot_vector_[i]] = slot_mf_dim_vector_[i];
    }

    std::unordered_set<int> dims_set;
    for (auto& it : slot_dim_map_) {
      dims_set.insert(it.second);
    }
    size_t num_of_dim = dims_set.size();
    index_dim_vec_.resize(num_of_dim);
    index_dim_vec_.assign(dims_set.begin(), dims_set.end());
    std::sort(index_dim_vec_.begin(), index_dim_vec_.end());
    std::unordered_map<int, int> dim_index_map;
    for (size_t i = 0; i < num_of_dim; i++) {
      dim_index_map[index_dim_vec_[i]] = i;
    }
    hbm_pools_.resize(resource_->total_gpu() * num_of_dim);
    mem_pools_.resize(resource_->total_gpu() * num_of_dim);
    max_mf_dim_ = index_dim_vec_.back();
    multi_mf_dim_ = (dim_index_map.size() >= 1) ? dim_index_map.size() : 0;
    resource_->set_multi_mf(multi_mf_dim_, max_mf_dim_);
    slot_index_vec_.resize(slot_mf_dim_vector_.size());
    for (size_t i = 0; i < slot_index_vec_.size(); i++) {
      slot_index_vec_[i] = dim_index_map[slot_mf_dim_vector_[i]];
    }
    val_type_size_ =
        TYPEALIGN(8, sizeof(FeatureValue) + sizeof(float) * (max_mf_dim_ + 1));
    grad_type_size_ =
        TYPEALIGN(8, sizeof(FeaturePushValue) + (max_mf_dim_ * sizeof(float)));
  }

T
Thunderbrook 已提交
304 305
  void ShowOneTable(int index) { HeterPs_->show_one_table(index); }

T
Thunderbrook 已提交
306 307
 private:
  static std::shared_ptr<PSGPUWrapper> s_instance_;
Y
yaoxuefeng 已提交
308
  Dataset* dataset_;
T
Thunderbrook 已提交
309 310 311 312 313 314 315 316
  std::unordered_map<
      uint64_t, std::vector<std::unordered_map<uint64_t, std::vector<float>>>>
      local_tables_;
  HeterPsBase* HeterPs_;
  std::vector<LoDTensor> keys_tensor;  // Cache for pull_sparse
  std::shared_ptr<HeterPsResource> resource_;
  int32_t sleep_seconds_before_fail_exit_;
  std::vector<int> slot_vector_;
Y
yaoxuefeng 已提交
317 318 319 320 321 322 323 324 325
  std::vector<int> slot_offset_vector_;
  std::vector<int> slot_mf_dim_vector_;
  std::unordered_map<int, int> slot_dim_map_;
  std::vector<int> slot_index_vec_;
  std::vector<int> index_dim_vec_;
  int multi_mf_dim_{0};
  int max_mf_dim_{0};
  size_t val_type_size_{0};
  size_t grad_type_size_{0};
T
Thunderbrook 已提交
326
  int multi_node_{0};
327
  int node_size_;
328
  uint64_t table_id_;
329 330 331
  std::vector<ncclComm_t> inner_comms_;
  std::vector<ncclComm_t> inter_comms_;
  std::vector<ncclUniqueId> inter_ncclids_;
Y
yaoxuefeng 已提交
332 333 334
  std::vector<int> heter_devices_;
  std::unordered_set<std::string> gpu_ps_config_keys_;
  HeterObjectPool<HeterContext> gpu_task_pool_;
335
  std::vector<std::vector<robin_hood::unordered_set<uint64_t>>> thread_keys_;
336 337
  std::vector<std::vector<std::vector<robin_hood::unordered_set<uint64_t>>>>
      thread_dim_keys_;
Y
yaoxuefeng 已提交
338 339 340
  int thread_keys_thread_num_ = 37;
  int thread_keys_shard_num_ = 37;
  uint64_t max_fea_num_per_pass_ = 5000000000;
341 342 343
  int year_;
  int month_;
  int day_;
T
Thunderbrook 已提交
344

Y
yaoxuefeng 已提交
345 346 347 348
  std::vector<MemoryPool*> mem_pools_;
  std::vector<HBMMemoryPool*> hbm_pools_;  // in multi mfdim, one table need hbm
                                           // pools of totol dims number

349 350 351 352 353 354 355 356 357 358 359 360 361
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      data_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      buildcpu_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      gpu_free_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<HeterContext> current_task_ = nullptr;
362
  std::thread pre_build_threads_;
363 364
  bool running_ = false;

T
Thunderbrook 已提交
365 366 367 368 369 370 371
 protected:
  static bool is_initialized_;
};

}  // end namespace framework
}  // end namespace paddle
#endif