p_norm_op.cu 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
16
#ifdef __NVCC__
17
#include "cub/cub.cuh"
18 19 20 21 22
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
G
Guoxia Wang 已提交
23
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
24
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
N
Noel 已提交
25
#include "paddle/fluid/operators/fc_op.h"
26
#include "paddle/fluid/operators/p_norm_op.h"
27 28
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
G
Guoxia Wang 已提交
29
#include "paddle/fluid/platform/float16.h"
30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

template <typename T>
__device__ __forceinline__ int sgn(T val) {
  return (T(0) < val) - (val < T(0));
}

G
Guoxia Wang 已提交
39 40 41
__device__ __forceinline__ platform::float16 inline_abs(platform::float16 x) {
  return static_cast<platform::float16>(abs(static_cast<float>(x)));
}
42 43 44
__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

G
Guoxia Wang 已提交
45 46 47
__device__ __forceinline__ int inline_sign(platform::float16 x) {
  return sgn<platform::float16>(x);
}
48 49 50
__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

G
Guoxia Wang 已提交
51 52 53 54 55
__device__ __forceinline__ platform::float16 inline_pow(
    platform::float16 base, platform::float16 exponent) {
  return static_cast<platform::float16>(
      pow(static_cast<float>(base), static_cast<float>(exponent)));
}
56 57 58 59 60 61 62
__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}
__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

63
template <typename T>
64 65
struct NonzeroFunctor {
  HOSTDEVICE explicit inline NonzeroFunctor() {}
66
  HOSTDEVICE inline T operator()(const T x) const {
67
    return static_cast<T>(static_cast<double>(x) != 0);
68
  }
69
};
70

71
template <typename T>
72 73
struct AbsFunctor {
  HOSTDEVICE explicit inline AbsFunctor() {}
74
  HOSTDEVICE inline T operator()(const T x) const {
75
    return static_cast<T>(inline_abs(x));
76
  }
77
};
78

79
template <typename T>
80 81 82
struct UnsignedPowFunctor {
  HOSTDEVICE explicit inline UnsignedPowFunctor(float porder) {
    this->porder = porder;
83
  }
84 85
  HOSTDEVICE inline T operator()(const T x) const {
    return static_cast<T>(inline_pow(inline_abs(x), static_cast<T>(porder)));
86 87 88 89
  }
  float porder;
};

90 91 92 93 94 95 96 97 98 99
template <typename DeviceContext, typename T>
class PnormCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_norm = ctx.Output<framework::Tensor>("Out");
    const T* x = in_x->data<T>();
    T* norm = out_norm->mutable_data<T>(ctx.GetPlace());
    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
N
Noel 已提交
100
    bool asvector = ctx.Attr<bool>("asvector");
101
    int axis = ctx.Attr<int>("axis");
102
    std::vector<int> reduce_axis = {axis};
N
Noel 已提交
103
    reduce_axis = GetReduceDim(reduce_axis, xdim.size(), asvector);
104
    auto stream = ctx.cuda_device_context().stream();
105

106
    using MT = typename details::MPTypeTrait<T>::Type;
107
    if (porder == 0) {
108 109
      TensorReduceFunctorImpl<T, T, kps::AddFunctor, NonzeroFunctor<T>>(
          *in_x, out_norm, NonzeroFunctor<T>(), reduce_axis, stream);
110
    } else if (porder == INFINITY) {
111 112
      TensorReduceFunctorImpl<T, T, kps::MaxFunctor, AbsFunctor<T>>(
          *in_x, out_norm, AbsFunctor<T>(), reduce_axis, stream);
113
    } else if (porder == -INFINITY) {
114 115
      TensorReduceFunctorImpl<T, T, kps::MinFunctor, AbsFunctor<T>>(
          *in_x, out_norm, AbsFunctor<T>(), reduce_axis, stream);
116
    } else {
117 118 119 120 121 122
      TensorReduceFunctorImpl<T, T, kps::AddFunctor, UnsignedPowFunctor<T>>(
          *in_x, out_norm, UnsignedPowFunctor<T>(porder), reduce_axis, stream);

      const framework::Tensor* tmp_norm = out_norm;
      std::vector<const framework::Tensor*> ins = {tmp_norm};
      std::vector<framework::Tensor*> outs = {out_norm};
123 124
      const auto& cuda_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
125
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<
126 127
          ElementwiseType::kUnary, T, T, UnsignedPowFunctor<T>>(
          cuda_ctx, ins, &outs, UnsignedPowFunctor<T>(1. / porder));
128
    }
129 130 131
  }
};

132 133 134 135 136 137
template <typename T>
struct AbsMaxAndMinGradFunctor {
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
                  const Dim& dim, int size) {
138 139
    dx->device(place) = dy->broadcast(dim) * (*x).sign() *
                        ((*x).abs() == y->broadcast(dim)).template cast<T>();
140
  }
141
};
142

143
template <typename T>
144 145 146 147
struct PNormGradFunctor {
  HOSTDEVICE explicit inline PNormGradFunctor(float porder) {
    this->porder = static_cast<T>(porder - 1.);
  }
148 149 150 151
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
                  const Dim& dim, int size) {
152 153 154
    dx->device(place) = (*x).abs().pow(this->porder) * (*x).sign() *
                        dy->broadcast(dim) *
                        (*y).pow(-this->porder).broadcast(dim);
155
  }
156
  T porder;
157
};
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172
template <typename DeviceContext, typename T, typename AttrType = T>
class PnormGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Out");
    auto* in_norm_dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    T* dx = out_dx->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
N
Noel 已提交
173
    bool reduce_all = (in_norm->numel() == 1);
174
    if (axis < 0) axis = xdim.size() + axis;
175
    const std::vector<int> dims = {axis};
176

177
    auto& cuda_ctx = ctx.template device_context<DeviceContext>();
178

179 180
    if (porder == 0) {
      math::SetConstant<DeviceContext, T> set_zero;
181
      set_zero(cuda_ctx, out_dx, static_cast<T>(0));
182
    } else if (porder == INFINITY || porder == -INFINITY) {
183
      AbsMaxAndMinGradFunctor<T> functor;
184
      LaunchReduceGradKernel<DeviceContext, T, AbsMaxAndMinGradFunctor<T>>(
185
          ctx, in_x, in_norm, in_norm_dy, out_dx, functor, dims, reduce_all);
186
    } else {
187 188 189
      auto functor = PNormGradFunctor<T>(porder);
      LaunchReduceGradKernel<DeviceContext, T, PNormGradFunctor<T>>(
          ctx, in_x, in_norm, in_norm_dy, out_dx, functor, dims, reduce_all);
190
    }
191 192 193 194 195 196 197 198 199
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

G
Guoxia Wang 已提交
200 201 202
REGISTER_OP_CUDA_KERNEL(p_norm,
                        ops::PnormCUDAKernel<CUDA, paddle::platform::float16>,
                        ops::PnormCUDAKernel<CUDA, float>,
203
                        ops::PnormCUDAKernel<CUDA, double>);
G
Guoxia Wang 已提交
204 205 206 207
REGISTER_OP_CUDA_KERNEL(
    p_norm_grad, ops::PnormGradCUDAKernel<CUDA, paddle::platform::float16>,
    ops::PnormGradCUDAKernel<CUDA, float>,
    ops::PnormGradCUDAKernel<CUDA, double>);