fluid_cluster_train_en.html 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Fluid Distributed Training &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
27
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
28 29 30
  

  
31

32 33
  
        <link rel="index" title="Index"
34 35 36
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 
37 38

  
39
  <script src="../../_static/js/modernizr.min.js"></script>
40 41 42 43 44

</head>

<body class="wy-body-for-nav" role="document">

45 46 47 48 49 50 51 52 53 54 55 56 57
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../../index_en.html" class="icon icon-home"> PaddlePaddle
          

          
58 59
          </a>

60 61 62 63 64 65
          
            
            
          

          
66
<div role="search">
67
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
68 69 70 71
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
72
</div>
73 74

          
75 76 77 78 79 80 81 82 83 84 85 86
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
                <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_en.html">FAQ</a></li>
87 88
</ul>

89 90 91 92
            
          
        </div>
      </div>
93 94
    </nav>

95
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
96

97 98 99 100 101
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../../index_en.html">PaddlePaddle</a>
      </nav>
102 103


104 105 106 107
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
108

109
 
110 111 112 113 114



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
115
    <li><a href="../../index_en.html">Docs</a> &raquo;</li>
116 117
      
    <li>Fluid Distributed Training</li>
118 119 120 121 122 123 124
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../../_sources/howto/cluster/fluid_cluster_train_en.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
125
  </ul>
126
  <hr/>
127 128 129 130 131 132 133 134
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="fluid-distributed-training">
<span id="fluid-distributed-training"></span><h1>Fluid Distributed Training<a class="headerlink" href="#fluid-distributed-training" title="Permalink to this headline"></a></h1>
<div class="section" id="introduction">
<span id="introduction"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
135
<p>In this article, we&#8217;ll explain how to configure and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster.</p>
136 137 138
</div>
<div class="section" id="preparations">
<span id="preparations"></span><h2>Preparations<a class="headerlink" href="#preparations" title="Permalink to this headline"></a></h2>
139 140 141
<div class="section" id="getting-the-cluster-ready">
<span id="getting-the-cluster-ready"></span><h3>Getting the cluster ready<a class="headerlink" href="#getting-the-cluster-ready" title="Permalink to this headline"></a></h3>
<p>Prepare the compute nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate to each other.</p>
142 143 144 145
</div>
<div class="section" id="have-paddlepaddle-installed">
<span id="have-paddlepaddle-installed"></span><h3>Have PaddlePaddle installed<a class="headerlink" href="#have-paddlepaddle-installed" title="Permalink to this headline"></a></h3>
<p>PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries.</p>
146
<p>PaddlePaddle build and installation guide can be found  <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html">here</a>.</p>
147 148 149 150
<p>In addition to above, the <code class="docutils literal"><span class="pre">cmake</span></code> command should be run with the option <code class="docutils literal"><span class="pre">WITH_DISTRIBUTE</span></code> set to on. An example bare minimum <code class="docutils literal"><span class="pre">cmake</span></code> command would look as follows:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>cmake .. -DWITH_DOC<span class="o">=</span>OFF -DWITH_GPU<span class="o">=</span>OFF -DWITH_DISTRIBUTE<span class="o">=</span>ON -DWITH_SWIG_PY<span class="o">=</span>ON -DWITH_PYTHON<span class="o">=</span>ON
</pre></div>
</div>
151
</div>
152 153
<div class="section" id="update-the-training-script">
<span id="update-the-training-script"></span><h3>Update the training script<a class="headerlink" href="#update-the-training-script" title="Permalink to this headline"></a></h3>
154 155 156
<div class="section" id="non-cluster-training-script">
<span id="non-cluster-training-script"></span><h4>Non-cluster training script<a class="headerlink" href="#non-cluster-training-script" title="Permalink to this headline"></a></h4>
<p>Let&#8217;s take <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html">Deep Learning 101</a>&#8216;s first chapter: &#8220;fit a line&#8221; as an example.</p>
157
<p>The non-cluster version of this demo with fluid API is as follows:</p>
158
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="kn">as</span> <span class="nn">paddle</span>
159
<span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="kn">as</span> <span class="nn">fluid</span>
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

<span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">13</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>

<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">square_error_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
<span class="n">avg_cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">cost</span><span class="p">)</span>

<span class="n">sgd_optimizer</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
<span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span>

<span class="n">BATCH_SIZE</span> <span class="o">=</span> <span class="mi">20</span>

<span class="n">train_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span>
    <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span>
        <span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">uci_housing</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="n">buf_size</span><span class="o">=</span><span class="mi">500</span><span class="p">),</span>
    <span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">)</span>

<span class="n">place</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">CPUPlace</span><span class="p">()</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DataFeeder</span><span class="p">(</span><span class="n">place</span><span class="o">=</span><span class="n">place</span><span class="p">,</span> <span class="n">feed_list</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">])</span>
<span class="n">exe</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Executor</span><span class="p">(</span><span class="n">place</span><span class="p">)</span>

<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>

<span class="n">PASS_NUM</span> <span class="o">=</span> <span class="mi">100</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">PASS_NUM</span><span class="p">):</span>
    <span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">save_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
    <span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">load_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
        <span class="n">avg_loss_value</span><span class="p">,</span> <span class="o">=</span> <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_main_program</span><span class="p">(),</span>
                                  <span class="n">feed</span><span class="o">=</span><span class="n">feeder</span><span class="o">.</span><span class="n">feed</span><span class="p">(</span><span class="n">data</span><span class="p">),</span>
                                  <span class="n">fetch_list</span><span class="o">=</span><span class="p">[</span><span class="n">avg_cost</span><span class="p">])</span>

        <span class="k">if</span> <span class="n">avg_loss_value</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">&lt;</span> <span class="mf">10.0</span><span class="p">:</span>
            <span class="nb">exit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># if avg cost less than 10.0, we think our code is good.</span>
<span class="nb">exit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
198 199
<p>We created a simple fully-connected neural network training program and handed it to the fluid executor to run for 100 passes.</p>
<p>Now let&#8217;s try to convert it to a distributed version to run on a cluster.</p>
200 201 202
</div>
<div class="section" id="introducing-parameter-server">
<span id="introducing-parameter-server"></span><h4>Introducing parameter server<a class="headerlink" href="#introducing-parameter-server" title="Permalink to this headline"></a></h4>
203
<p>As we can see from the non-cluster version of training script, there is only one role in the script: the trainer, that performs the computing as well as holds the parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle.</p>
204
<p><img alt="parameter server architecture" src="../../_images/trainer.png" /></p>
205 206
<p>Parameter Server in fluid not only holds the parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more technical details, please refer to  <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md">this document</a>.</p>
<p>Now we need to create programs for both: trainers and parameter servers, the question is how?</p>
207 208 209
</div>
<div class="section" id="slice-the-program">
<span id="slice-the-program"></span><h4>Slice the program<a class="headerlink" href="#slice-the-program" title="Permalink to this headline"></a></h4>
210 211
<p>Fluid provides a tool called &#8220;Distributed Transpiler&#8221; that automatically converts the non-cluster program into cluster program.</p>
<p>The idea behind this tool is to find the optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP.</p>
212 213 214 215 216 217
<p>Optimize OPs and gradient parameters can be found from the return values of optimizer&#8217;s minimize function.</p>
<p>To put them together:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="o">...</span> <span class="c1">#define the program, cost, and create sgd optimizer</span>

<span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span> <span class="o">=</span> <span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span> <span class="c1">#get optimize OPs and gradient parameters</span>

218
<span class="n">t</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DistributeTranspiler</span><span class="p">()</span> <span class="c1"># create the transpiler instance</span>
219
<span class="c1"># slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers</span>
220
<span class="n">t</span><span class="o">.</span><span class="n">transpile</span><span class="p">(</span><span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span><span class="p">,</span> <span class="n">pservers</span><span class="o">=</span><span class="n">pserver_endpoints</span><span class="p">,</span> <span class="n">trainers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
221 222 223 224 225

<span class="o">...</span> <span class="c1">#create executor</span>

<span class="c1"># in pserver, run this</span>
<span class="c1">#current_endpoint here means current pserver IP:PORT you wish to run on</span>
226 227 228 229
<span class="n">pserver_prog</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">get_pserver_program</span><span class="p">(</span><span class="n">current_endpoint</span><span class="p">)</span>
<span class="n">pserver_startup</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">get_startup_program</span><span class="p">(</span><span class="n">current_endpoint</span><span class="p">,</span> <span class="n">pserver_prog</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">pserver_startup</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">pserver_prog</span><span class="p">)</span>
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

<span class="c1"># in trainer, run this</span>
<span class="o">...</span> <span class="c1"># define data reader</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">):</span>
    <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
        <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">t</span><span class="o">.</span><span class="n">get_trainer_program</span><span class="p">())</span>


</pre></div>
</div>
</div>
</div>
<div class="section" id="e2e-demo">
<span id="e2e-demo"></span><h3>E2E demo<a class="headerlink" href="#e2e-demo" title="Permalink to this headline"></a></h3>
245
<p>Please find the complete demo from <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book_distribute/notest_dist_fit_a_line.py">here</a>.
246
First <code class="docutils literal"><span class="pre">cd</span></code> into the folder that contains the <code class="docutils literal"><span class="pre">python</span></code> files. In this case:</p>
247
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> /paddle/python/paddle/fluid/tests/book_distribute
248 249 250
</pre></div>
</div>
<p>In parameter server node run the following in the command line:</p>
251 252 253 254 255
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>PSERVER python notest_dist_fit_a_line.py
</pre></div>
</div>
<p><em>please note we assume that your parameter server runs at 192.168.1.2:6174</em></p>
<p>Wait until the prompt <code class="docutils literal"><span class="pre">Server</span> <span class="pre">listening</span> <span class="pre">on</span> <span class="pre">192.168.1.2:6174</span></code></p>
256
<p>Then in 2 of your trainer nodes run this:</p>
257 258 259
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>TRAINER python notest_dist_fit_a_line.py
</pre></div>
</div>
260
<p><em>the reason you need to run this command twice in 2 nodes is because: in the script we set the trainer count to be 2. You can change this setting on line 50</em></p>
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
<p>Now you have 2 trainers and 1 parameter server up and running.</p>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
297
            URL_ROOT:'../../',
298 299 300
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
301
            HAS_SOURCE:  true
302 303
        };
    </script>
304 305 306
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
307
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
308

309 310 311 312
  

  
  
313
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
314
  
315 316

  
317
  
318 319 320 321 322 323
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
324 325 326

</body>
</html>