“6d4435ac0f76fc2bebe0eeb7fef46b000456b278”上不存在“git@gitcode.net:paddlepaddle/Paddle.git”
large_model_dist_train.html 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Alalysis of large model distributed training in Paddle &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
31

32 33 34 35 36 37 38 39 40 41 42 43 44
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

45 46 47 48 49 50 51 52 53 54 55 56 57
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../../index_en.html" class="icon icon-home"> PaddlePaddle
          

          
58 59
          </a>

60 61 62 63 64 65
          
            
            
          

          
66 67 68 69 70 71
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
72
</div>
73 74

          
75 76 77 78 79 80 81 82 83 84 85 86
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
                <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_en.html">FAQ</a></li>
87 88
</ul>

89 90 91 92
            
          
        </div>
      </div>
93 94
    </nav>

95
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
96

97 98 99 100 101
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../../index_en.html">PaddlePaddle</a>
      </nav>
102 103


104 105 106 107
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
108

109
 
110 111 112 113 114



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
115
    <li><a href="../../index_en.html">Docs</a> &raquo;</li>
116 117
      
    <li>Alalysis of large model distributed training in Paddle</li>
118 119 120 121 122 123 124
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../../_sources/design/cluster_train/large_model_dist_train.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
125
  </ul>
126
  <hr/>
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="alalysis-of-large-model-distributed-training-in-paddle">
<span id="alalysis-of-large-model-distributed-training-in-paddle"></span><h1>Alalysis of large model distributed training in Paddle<a class="headerlink" href="#alalysis-of-large-model-distributed-training-in-paddle" title="Permalink to this headline"></a></h1>
<p><strong><em>NOTE: This is only some note for how we implemeted this scheme in V1, not a new design.</em></strong></p>
<div class="section" id="what-is-it">
<span id="what-is-it"></span><h2>What is it<a class="headerlink" href="#what-is-it" title="Permalink to this headline"></a></h2>
<p>We often encounter cases that the embedding layer parameters(sparse) are so large that we can not store it in the trainer&#8217;s memory when training. So we need to put them to several servers, and fetch them row by row instead of fetch all of the parameters.</p>
</div>
<div class="section" id="how-to-use">
<span id="how-to-use"></span><h2>How to use<a class="headerlink" href="#how-to-use" title="Permalink to this headline"></a></h2>
<p>Specify command-line argument like  <code class="docutils literal"><span class="pre">--loadsave_parameters_in_pserver=true</span> <span class="pre">--ports_num_for_sparse=1</span> <span class="pre">--use_old_updater=1</span></code> when starting the paddle trainer. And also add something like <code class="docutils literal"><span class="pre">--ports_num_for_sparse=1</span> <span class="pre">--pserver_num_threads=5</span></code> when starting pserver processes.</p>
<p>Accrodingly, configure your embedding layers like:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">SPARSE_REMOTE</span><span class="o">=</span><span class="bp">True</span>

<span class="n">w1</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;w1&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">dict_size</span><span class="p">)</span>
<span class="n">emb1</span> <span class="o">=</span> <span class="n">embedding_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">w1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="n">ParameterAttribute</span><span class="p">(</span><span class="n">sparse_update</span><span class="o">=</span><span class="n">SPARSE_REMOTE</span><span class="p">))</span>
<span class="n">w2</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;w2&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">dict_size</span><span class="p">)</span>
<span class="n">emb2</span> <span class="o">=</span> <span class="n">embedding_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">w2</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="n">ParameterAttribute</span><span class="p">(</span><span class="n">sparse_update</span><span class="o">=</span><span class="n">SPARSE_REMOTE</span><span class="p">))</span>
<span class="o">...</span>
</pre></div>
</div>
</div>
<div class="section" id="implementation-details">
<span id="implementation-details"></span><h2>Implementation details<a class="headerlink" href="#implementation-details" title="Permalink to this headline"></a></h2>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">enum</span> <span class="n">MatType</span> <span class="p">{</span>
  <span class="n">MAT_NORMAL</span><span class="p">,</span>
  <span class="n">MAT_NORMAL_SHARED</span><span class="p">,</span>
  <span class="n">MAT_VALUE_SHARED</span><span class="p">,</span>
  <span class="n">MAT_SPARSE_ROW_IDS</span><span class="p">,</span>
  <span class="n">MAT_SPARSE_ROW_AUTO_GROW</span><span class="p">,</span>
  <span class="n">MAT_CACHE_ROW</span><span class="p">,</span>
  <span class="n">MAT_SPARSE_ROW</span><span class="p">,</span>
  <span class="n">MAT_SPARSE_ROW_PREFETCH</span><span class="p">,</span>
  <span class="n">MAT_SPARSE_ROW_PREFETCH_FULL_SIZE</span><span class="p">,</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">MAT_SPARSE_ROW_PREFETCH</span></code> is what we use when configured to fetch only row of matrix when training.</p>
<p>In <code class="docutils literal"><span class="pre">trainer_internal.cpp:L93</span> <span class="pre">trainOneBatch</span></code>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span>  <span class="k">if</span> <span class="p">(</span><span class="n">config_</span><span class="o">-&gt;</span><span class="n">getOptConfig</span><span class="p">().</span><span class="n">use_sparse_remote_updater</span><span class="p">())</span> <span class="p">{</span>
    <span class="n">REGISTER_TIMER</span><span class="p">(</span><span class="s">&quot;prefetch&quot;</span><span class="p">);</span>
    <span class="n">gradientMachine_</span><span class="o">-&gt;</span><span class="n">prefetch</span><span class="p">(</span><span class="n">inArgs</span><span class="p">);</span>
    <span class="n">parameterUpdater_</span><span class="o">-&gt;</span><span class="n">getParametersRemote</span><span class="p">();</span>
  <span class="p">}</span>
</pre></div>
</div>
<p>When doing actual network forward and backward, at the beginning of each batch, the trainer will try to download one row of data from pserver.</p>
<p>In <code class="docutils literal"><span class="pre">trainer/RemoteParameterUpdater.cpp</span></code>: <code class="docutils literal"><span class="pre">parameterUpdater_-&gt;getParametersRemote();</span></code>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">if</span> <span class="p">(</span><span class="n">fullSize</span><span class="p">)</span> <span class="p">{</span>
    <span class="p">...</span>
<span class="p">}</span> <span class="k">else</span> <span class="p">{</span>
<span class="n">getParams</span> <span class="o">=</span> <span class="p">[</span><span class="o">&amp;</span><span class="p">]</span> <span class="p">{</span>
    <span class="n">parameterClient_</span><span class="o">-&gt;</span><span class="n">getParameterSparse</span><span class="p">(</span>
        <span class="cm">/* recvParameterType= */</span> <span class="n">PARAMETER_VALUE</span><span class="p">,</span> <span class="n">sendBackParameterType</span><span class="p">);</span>
<span class="p">};</span>
<span class="n">applyL1</span> <span class="o">=</span> <span class="p">[](</span><span class="n">Parameter</span><span class="o">&amp;</span> <span class="n">para</span><span class="p">,</span> <span class="n">real</span> <span class="n">decayRate</span><span class="p">)</span> <span class="p">{</span>
    <span class="n">para</span><span class="p">.</span><span class="n">getMat</span><span class="p">(</span><span class="n">PARAMETER_VALUE</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">applyL1</span><span class="p">(</span><span class="cm">/*lr=*/</span><span class="mf">1.0f</span><span class="p">,</span> <span class="n">decayRate</span><span class="p">);</span>
<span class="p">};</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Calling <code class="docutils literal"><span class="pre">parameterClient_-&gt;getParameterSparse</span></code> will do remote call to pserver&#8217;s <code class="docutils literal"><span class="pre">getParameterSparse</span></code>:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="n">ParameterServer2</span><span class="o">::</span><span class="n">getParameterSparse</span><span class="p">(</span><span class="k">const</span> <span class="n">SendParameterRequest</span><span class="o">&amp;</span> <span class="n">request</span><span class="p">,</span>
                                          <span class="n">std</span><span class="o">::</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">Buffer</span><span class="o">&gt;&amp;</span> <span class="n">inputBuffers</span><span class="p">,</span>
                                          <span class="n">SendParameterResponse</span><span class="o">*</span> <span class="n">response</span><span class="p">,</span>
                                          <span class="n">std</span><span class="o">::</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">Buffer</span><span class="o">&gt;*</span> <span class="n">outputBuffers</span><span class="p">)</span> <span class="p">{</span>
  <span class="p">(</span><span class="kt">void</span><span class="p">)</span><span class="n">inputBuffers</span><span class="p">;</span>
  <span class="k">auto</span><span class="o">&amp;</span> <span class="n">buffer</span> <span class="o">=</span> <span class="o">*</span><span class="n">readWriteBuffer_</span><span class="p">;</span>
  <span class="kt">size_t</span> <span class="n">numReals</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
  <span class="k">for</span> <span class="p">(</span><span class="k">const</span> <span class="k">auto</span><span class="o">&amp;</span> <span class="nl">block</span> <span class="p">:</span> <span class="n">request</span><span class="p">.</span><span class="n">blocks</span><span class="p">())</span> <span class="p">{</span>
    <span class="n">numReals</span> <span class="o">+=</span> <span class="n">getParameterConfig</span><span class="p">(</span><span class="n">block</span><span class="p">).</span><span class="n">dims</span><span class="p">(</span><span class="mi">1</span><span class="p">);</span>
  <span class="p">}</span>
  <span class="n">buffer</span><span class="p">.</span><span class="n">resize</span><span class="p">(</span><span class="n">numReals</span><span class="p">);</span>

  <span class="n">VLOG</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> <span class="o">&lt;&lt;</span> <span class="s">&quot;pserver: getParameterSparse, numReals=&quot;</span> <span class="o">&lt;&lt;</span> <span class="n">numReals</span><span class="p">;</span>

  <span class="n">ReadLockGuard</span> <span class="nf">guard</span><span class="p">(</span><span class="n">parameterMutex_</span><span class="p">);</span>
  <span class="kt">size_t</span> <span class="n">offset</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
  <span class="k">for</span> <span class="p">(</span><span class="k">const</span> <span class="k">auto</span><span class="o">&amp;</span> <span class="nl">block</span> <span class="p">:</span> <span class="n">request</span><span class="p">.</span><span class="n">blocks</span><span class="p">())</span> <span class="p">{</span>
    <span class="kt">size_t</span> <span class="n">width</span> <span class="o">=</span> <span class="n">getParameterConfig</span><span class="p">(</span><span class="n">block</span><span class="p">).</span><span class="n">dims</span><span class="p">(</span><span class="mi">1</span><span class="p">);</span>
    <span class="n">Buffer</span> <span class="n">buf</span> <span class="o">=</span> <span class="p">{</span><span class="n">buffer</span><span class="p">.</span><span class="n">data</span><span class="p">()</span> <span class="o">+</span> <span class="n">offset</span><span class="p">,</span> <span class="n">width</span><span class="p">};</span>
    <span class="kt">int</span> <span class="n">type</span> <span class="o">=</span> <span class="n">request</span><span class="p">.</span><span class="n">send_back_parameter_type</span><span class="p">();</span>
    <span class="n">sendBackParameterSparse</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="n">type</span><span class="p">,</span> <span class="n">response</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">buf</span><span class="p">,</span> <span class="n">width</span><span class="p">,</span> <span class="n">outputBuffers</span><span class="p">);</span>
    <span class="n">offset</span> <span class="o">+=</span> <span class="n">width</span><span class="p">;</span>
  <span class="p">}</span>
<span class="p">}</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">getParameterConfig(block).dims(1)</span></code> returns the width of the current &#8220;parameter block&#8221;(a shard of parameter object),
then <code class="docutils literal"><span class="pre">getParameterSparse</span></code> remote call returns only one row of data to the client.</p>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
258
            HAS_SOURCE:  true
259 260 261 262 263 264
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
265

266 267 268 269 270 271
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
272 273

  
274
  
275 276 277 278 279 280
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
281 282 283

</body>
</html>