analyzer_tester.cc 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"
16

17
#include <google/protobuf/text_format.h>
18
#include <gtest/gtest.h>
L
luotao1 已提交
19
#include <thread>  // NOLINT
Y
Yan Chunwei 已提交
20
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
21
#include "paddle/fluid/framework/ir/pass.h"
22
#include "paddle/fluid/inference/analysis/ut_helper.h"
Y
Yan Chunwei 已提交
23
#include "paddle/fluid/inference/api/analysis_predictor.h"
24
#include "paddle/fluid/inference/api/helper.h"
25
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/inference/utils/singleton.h"
27

28 29
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");
30 31
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
L
luotao1 已提交
32
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
33

34 35 36 37
namespace paddle {
namespace inference {
namespace analysis {

T
tensor-tang 已提交
38
using namespace framework;  // NOLINT
Y
Yan Chunwei 已提交
39

Y
Yan Chunwei 已提交
40
TEST(Analyzer, analysis_without_tensorrt) {
41
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
Y
Yan Chunwei 已提交
42 43
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
44 45 46 47
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
48
TEST(Analyzer, analysis_with_tensorrt) {
49
  FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Y
Yan Chunwei 已提交
50 51
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
52 53 54 55
  Analyzer analyser;
  analyser.Run(&argument);
}

56
void TestWord2vecPrediction(const std::string &model_path) {
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  auto predictor =
      ::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
          config);

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

  PADDLE_ENFORCE(outputs.size(), 1UL);
  // Check the output buffer size and result of each tid.
  PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
  float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
                     0.000932706};
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
  for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
    LOG(INFO) << "data: "
87 88
              << static_cast<float *>(outputs.front().data.data())[i];
    PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i],
89 90 91 92
                   result[i]);
  }
}

93 94 95 96 97 98 99 100 101 102 103
namespace {

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
104
  explicit DataRecord(const std::string &path, int batch_size = 1)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
185 186 187
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
188 189 190 191 192 193
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
194 195 196 197
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
198
  week_tensor.lod.assign({one_batch.lod3});
199 200 201
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
202
  minute_tensor.lod.assign({one_batch.lod3});
203
  // clang-format on
204
  // assign data
L
luotao1 已提交
205 206
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
207
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
L
luotao1 已提交
208 209 210 211
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

}  // namespace

const float ditu_rnn_target_data[] = {
    104.711, 11.2431, 1.35422, 0,       0,       0,       0,       0,
    27.7039, 1.41486, 7.09526, 0,       0,       0,       0,       0,
    7.6481,  6.5324,  56.383,  2.88018, 8.92918, 132.007, 4.27429, 2.02934,
    14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0,
    80.0249, 4.77739, 0,       0,       0,       0,       0,       0,
    47.5643, 2.67029, 8.76252, 0,       0,       0,       0,       0,
    51.8822, 4.4411,  0,       0,       0,       0,       0,       0,
    10.7286, 12.0595, 10.6672, 0,       0,       0,       0,       0,
    93.5771, 3.84641, 0,       0,       0,       0,       0,       0,
    169.426, 0,       0,       0,       0,       0,       0,       0};
// Test with a really complicate model.
L
luotao1 已提交
237 238
void TestDituRNNPrediction(bool use_analysis_and_activate_ir = false,
                           int num_threads = FLAGS_num_threads) {
239
  NativeConfig config;
240 241
  config.prog_file = FLAGS_infer_ditu_rnn_model + "/__model__";
  config.param_file = FLAGS_infer_ditu_rnn_model + "/param";
242 243 244
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
L
luotao1 已提交
245 246
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
247

248
  auto base_predictor =
249
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
250 251
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(config);
252
  std::vector<PaddleTensor> input_slots;
L
luotao1 已提交
253
  DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);
254 255
  // Prepare inputs.
  PrepareInputs(&input_slots, &data, batch_size);
256 257 258
  std::vector<PaddleTensor> outputs, base_outputs;

  base_predictor->Run(input_slots, &base_outputs);
259

260
  LOG(INFO) << "===========profile result===========";
L
luotao1 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  if (num_threads == 1) {
    std::vector<PaddleTensor> input_slots;
    // Prepare inputs.
    DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);
    PrepareInputs(&input_slots, &data, batch_size);

    Timer timer;
    timer.tic();
    for (int i = 0; i < num_times; i++) {
      predictor->Run(input_slots, &outputs);
    }
    print_time(batch_size, num_times, 1, 0, timer.toc() / num_times);
  } else {
    std::vector<std::thread> threads;
    std::vector<PaddleTensor> input_slots;
    // Prepare inputs.
    PrepareInputs(&input_slots, &data, batch_size);
    std::vector<PaddleTensor> outputs;
    for (int tid = 0; tid < num_threads; ++tid) {
      threads.emplace_back([&, tid]() {
        auto predictor_tid =
            CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(
                config);
        DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);

        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          predictor_tid->Run(input_slots, &outputs);
        }
        print_time(batch_size, num_times, num_threads, tid,
                   timer.toc() / num_times);
      });
    }
    for (int i = 0; i < num_threads; ++i) {
      threads[i].join();
    }
  }
299
  LOG(INFO) << "=====================================";
300

L
luotao1 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  if (num_threads == 1) {
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size());
    for (size_t i = 0; i < outputs.size(); i++) {
      auto &out = outputs[i];
      auto &base_out = base_outputs[i];
      size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                    [](int a, int b) { return a * b; });
      size_t size1 =
          std::accumulate(base_out.shape.begin(), base_out.shape.end(), 1,
                          [](int a, int b) { return a * b; });
      PADDLE_ENFORCE_EQ(size, size1);
      PADDLE_ENFORCE_GT(size, 0);
      float *data = static_cast<float *>(out.data.data());
      float *base_data = static_cast<float *>(base_out.data.data());
      for (size_t i = 0; i < size; i++) {
        EXPECT_NEAR(data[i], base_data[i], 1e-3);
      }
319 320
    }
  }
Y
Yan Chunwei 已提交
321

L
luotao1 已提交
322
  if (use_analysis_and_activate_ir) {
Y
Yan Chunwei 已提交
323 324 325 326 327 328 329 330 331 332 333
    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }

    ASSERT_TRUE(fuse_statis.count("fc"));
    EXPECT_EQ(fuse_statis.at("fc"), 1);
334
    EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 1);
Y
Yan Chunwei 已提交
335
  }
336 337 338 339
}

// Directly infer with the original model.
TEST(Analyzer, DituRNN_without_analysis) {
L
luotao1 已提交
340 341 342
  LOG(INFO) << "ditu rnn without analysis";
  TestDituRNNPrediction(false, 1);
  TestDituRNNPrediction(false, 4);  // multi-threads
343 344 345 346 347
}

// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST(Analyzer, DituRNN_with_analysis_with_IR) {
  LOG(INFO) << "ditu rnn with analysis and IR fuse";
L
luotao1 已提交
348 349
  TestDituRNNPrediction(true, 1);
  TestDituRNNPrediction(true, 4);  // multi-threads
350 351
}

352 353 354
}  // namespace analysis
}  // namespace inference
}  // namespace paddle
355 356

USE_PASS(fc_fuse_pass);
357 358
USE_PASS(seq_concat_fc_fuse_pass);
USE_PASS(fc_lstm_fuse_pass);
359 360
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);
361
USE_PASS(attention_lstm_fuse_pass);