jit_code.cc 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_code.h"
T
tensor-tang 已提交
16
#include <stddef.h>                                  // offsetof
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel.h"  // TODO(TJ): remove me
18 19 20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

T
tensor-tang 已提交
25
using namespace platform;  // NOLINT
26

T
tensor-tang 已提交
27
bool VXXJitCode::init(int d, int scalar_index) {
28 29
  // It's not necessary to use avx512 since it would slow down the frequency
  // and this kernel is not compute bound.
T
tensor-tang 已提交
30
  return MayIUse(avx) && scalar_index >= 0 && scalar_index <= 2;
31 32
}

T
tensor-tang 已提交
33
void VXXJitCode::generate() {
T
tensor-tang 已提交
34
  // do not need push stack, and do not need save avx512reg if do not use avx512
T
tensor-tang 已提交
35
  int offset = 0;
T
tensor-tang 已提交
36 37 38
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
39 40 41 42 43
  if (scalar_index_ == 1) {
    vbroadcastss(ymm_src1, ptr[param1]);
  } else if (scalar_index_ == 2) {
    vbroadcastss(ymm_src2, ptr[param2]);
  }
44
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
T
tensor-tang 已提交
45 46 47 48 49 50
    if (scalar_index_ != 1) {
      vmovups(ymm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(ymm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
51 52 53 54 55
    if (type_ == operand_type::mul) {
      vmulps(ymm_dst, ymm_src1, ymm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(ymm_dst, ymm_src1, ymm_src2);
    }
T
tensor-tang 已提交
56 57 58
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
T
tensor-tang 已提交
59
    vmovups(ptr[param3 + offset], ymm_dst);
60
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
61
  }
62
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
63
  while (rest > 0) {
T
tensor-tang 已提交
64
    int block = XMM_FLOAT_BLOCK;
T
tensor-tang 已提交
65
    if (rest >= 4) {
T
tensor-tang 已提交
66
      block = 4;
T
tensor-tang 已提交
67 68 69 70 71 72 73
      if (scalar_index_ != 1) {
        vmovups(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovups(xmm_src2, ptr[param2 + offset]);
      }
    } else if (rest >= 2) {
T
tensor-tang 已提交
74
      block = 2;
T
tensor-tang 已提交
75 76 77 78 79 80 81
      if (scalar_index_ != 1) {
        vmovq(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovq(xmm_src2, ptr[param2 + offset]);
      }
    } else {
T
tensor-tang 已提交
82
      block = 1;
T
tensor-tang 已提交
83 84 85 86 87 88
      if (scalar_index_ != 1) {
        vmovss(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovss(xmm_src2, ptr[param2 + offset]);
      }
T
tensor-tang 已提交
89
    }
T
tensor-tang 已提交
90 91 92 93 94 95 96 97 98
    switch (type_) {
      case operand_type::mul:
        vmulps(xmm_dst, xmm_src1, xmm_src2);
        break;
      case operand_type::add:
        vaddps(xmm_dst, xmm_src1, xmm_src2);
        break;
      default:
        break;
T
tensor-tang 已提交
99
    }
T
tensor-tang 已提交
100 101 102
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
103 104 105 106 107 108
    if (rest >= 4) {
      vmovups(ptr[param3 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param3 + offset], xmm_dst);
    } else {
      vmovss(ptr[param3 + offset], xmm_dst);
T
tensor-tang 已提交
109
    }
T
tensor-tang 已提交
110 111
    offset += sizeof(float) * block;
    rest -= block;
T
tensor-tang 已提交
112 113 114
  }
  ret();
}
T
tensor-tang 已提交
115

T
tensor-tang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
const float exp_float_consts[] ALIGN32 = {REPEAT_8TIMES(1.f),
                                          REPEAT_8TIMES(2.f),
                                          REPEAT_8TIMES(0.5f),
                                          REPEAT_8TIMES(EXP_HIG),
                                          REPEAT_8TIMES(EXP_LOW),
                                          REPEAT_8TIMES(CEPHES_LOG2EF),
                                          REPEAT_8TIMES(CEPHES_EXP_C1),
                                          REPEAT_8TIMES(CEPHES_EXP_C2),
                                          REPEAT_8TIMES(CEPHES_EXP_P0),
                                          REPEAT_8TIMES(CEPHES_EXP_P1),
                                          REPEAT_8TIMES(CEPHES_EXP_P2),
                                          REPEAT_8TIMES(CEPHES_EXP_P3),
                                          REPEAT_8TIMES(CEPHES_EXP_P4),
                                          REPEAT_8TIMES(CEPHES_EXP_P5),
                                          REPEAT_8TIMES(EXP_MAX_INPUT),
                                          REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
                                          REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
T
tensor-tang 已提交
133

T
tensor-tang 已提交
134 135
const int exp_int_0x7f[] ALIGN32 = {REPEAT_8TIMES(0x7f)};
int g_tmp_mem[16] ALIGN32 = {0};
T
tensor-tang 已提交
136

137
bool VActJitCode::init(int d, operand_type type) {
T
tensor-tang 已提交
138 139
  // TODO(TJ): implement avx512, avx_exp is slower than mkl when d >= 256
  return MayIUse(avx);
T
tensor-tang 已提交
140 141
}

142
void VActJitCode::generate() {
T
tensor-tang 已提交
143
  int offset = 0;
144
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
145
    vmovups(ymm_src, ptr[param1 + offset]);
146
    act<ymm_t>(ymm_dst, ymm_src, type_);
147
    vmovups(ptr[param2 + offset], ymm_dst);
148
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
149
  }
150
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
151
  while (rest > 0) {
T
tensor-tang 已提交
152
    int block = XMM_FLOAT_BLOCK;
T
tensor-tang 已提交
153
    if (rest >= 4) {
T
tensor-tang 已提交
154
      block = 4;
T
tensor-tang 已提交
155 156
      vmovups(xmm_src, ptr[param1 + offset]);
    } else if (rest >= 2) {
T
tensor-tang 已提交
157
      block = 2;
T
tensor-tang 已提交
158 159
      vmovq(xmm_src, ptr[param1 + offset]);
    } else {
T
tensor-tang 已提交
160
      block = 1;
T
tensor-tang 已提交
161
      vmovss(xmm_src, ptr[param1 + offset]);
T
tensor-tang 已提交
162
    }
163
    act<xmm_t>(xmm_dst, xmm_src, type_);
T
tensor-tang 已提交
164 165 166 167 168 169
    if (rest >= 4) {
      vmovups(ptr[param2 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param2 + offset], xmm_dst);
    } else {
      vmovss(ptr[param2 + offset], xmm_dst);
T
tensor-tang 已提交
170
    }
T
tensor-tang 已提交
171 172
    offset += sizeof(float) * block;
    rest -= block;
173
  }
T
tensor-tang 已提交
174 175 176
  ret();
}

T
tensor-tang 已提交
177 178 179
bool LSTMJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }

void LSTMJitCode::generate() {
180 181 182
  if (use_peephole_) {
    preCode();
  }
T
tensor-tang 已提交
183 184 185 186
  reg64_t reg_ptr_gates = rax;
  reg64_t reg_ptr_ct_1 = r9;
  reg64_t reg_ptr_ct = r10;
  reg64_t reg_ptr_ht = r11;
T
tensor-tang 已提交
187
  reg64_t reg_ptr_wp = r12;
T
tensor-tang 已提交
188 189 190 191
  mov(reg_ptr_gates, ptr[param1 + offsetof(lstm_t, gates)]);
  mov(reg_ptr_ct_1, ptr[param1 + offsetof(lstm_t, ct_1)]);
  mov(reg_ptr_ct, ptr[param1 + offsetof(lstm_t, ct)]);
  mov(reg_ptr_ht, ptr[param1 + offsetof(lstm_t, ht)]);
T
tensor-tang 已提交
192 193 194
  if (use_peephole_) {
    mov(reg_ptr_wp, ptr[param1 + offsetof(lstm_t, wp)]);
  }
T
tensor-tang 已提交
195 196

  int offset = 0;
197
  int d = num_ * sizeof(float);
T
tensor-tang 已提交
198
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    /* gates: W_ch, W_ih, W_fh, W_oh */
    ymm_t ymm_c = ymm_t(0);
    ymm_t ymm_i = ymm_t(1);
    ymm_t ymm_f = ymm_t(2);
    ymm_t ymm_o = ymm_t(3);
    ymm_t ymm_ct_1 = ymm_t(4);
    ymm_t ymm_wp0 = ymm_t(5);
    ymm_t ymm_wp1 = ymm_t(6);
    ymm_t ymm_wp2 = ymm_t(7);
    vmovups(ymm_c, ptr[reg_ptr_gates + offset]);
    vmovups(ymm_i, ptr[reg_ptr_gates + offset + d]);
    vmovups(ymm_f, ptr[reg_ptr_gates + offset + 2 * d]);
    vmovups(ymm_o, ptr[reg_ptr_gates + offset + 3 * d]);
    if (!compute_c1h1_) {
T
tensor-tang 已提交
213 214
      vmovups(ymm_ct_1, ptr[reg_ptr_ct_1 + offset]);
    }
215 216 217 218 219 220 221 222 223 224 225 226 227 228
    if (use_peephole_) {
      vmovups(ymm_wp0, ptr[reg_ptr_wp + offset]);
      vmovups(ymm_wp1, ptr[reg_ptr_wp + offset + d]);
      vmovups(ymm_wp2, ptr[reg_ptr_wp + offset + 2 * d]);
    }
    /* C_t = act_cand(c) * act_gate(i) + C_t-1 * act_gate(f) */
    // act_cand(c)
    act<ymm_t>(ymm_c, ymm_c, act_cand_);
    // act_gate(i) or act_gate(ct_1 * wp0 + i)
    if (!compute_c1h1_ && use_peephole_) {
      vmulps(ymm_wp0, ymm_ct_1, ymm_wp0);
      vaddps(ymm_i, ymm_i, ymm_wp0);
    }
    act<ymm_t>(ymm_i, ymm_i, act_gate_);
T
tensor-tang 已提交
229
    vmulps(ymm_c, ymm_c, ymm_i);
230
    if (!compute_c1h1_) {
231
      // act_gate(f) or act_gate(ct_1 * wp1 + f)
T
tensor-tang 已提交
232
      if (use_peephole_) {
233 234
        vmulps(ymm_wp1, ymm_ct_1, ymm_wp1);
        vaddps(ymm_f, ymm_f, ymm_wp1);
T
tensor-tang 已提交
235
      }
236 237 238
      act<ymm_t>(ymm_f, ymm_f, act_gate_);
      // ct
      vmulps(ymm_f, ymm_f, ymm_ct_1);
T
tensor-tang 已提交
239 240
      vaddps(ymm_f, ymm_f, ymm_c);
    }
241 242
    /* H_t = act_cell(C_t) * act_gate(o) */
    // act_cell(C_t)
243
    ymm_t ymm_ct = compute_c1h1_ ? ymm_c : ymm_f;
T
tensor-tang 已提交
244
    ymm_t ymm_tmp = ymm_i;
245 246
    act<ymm_t>(ymm_tmp, ymm_ct, act_cell_);
    // act_gate(o) or act_gate(ct * wp2 + o)
T
tensor-tang 已提交
247
    if (use_peephole_) {
248 249
      vmulps(ymm_wp2, ymm_ct, ymm_wp2);
      vaddps(ymm_o, ymm_o, ymm_wp2);
T
tensor-tang 已提交
250
    }
251 252 253 254 255 256
    act<ymm_t>(ymm_o, ymm_o, act_gate_);
    // ht
    vmulps(ymm_o, ymm_o, ymm_tmp);
    // save ct and ht
    vmovups(ptr[reg_ptr_ct + offset], ymm_ct);
    vmovups(ptr[reg_ptr_ht + offset], ymm_o);
T
tensor-tang 已提交
257 258 259
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
  }

260 261 262 263 264
  if (use_peephole_) {
    postCode();
  } else {
    ret();
  }
T
tensor-tang 已提交
265 266
}

267 268 269 270
bool GRUJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }

void GRUJitCode::generate() {
  reg64_t reg_ptr_gates = rax;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  reg64_t reg_ptr_ht_1 = r9;
  reg64_t reg_ptr_ht = r10;
  mov(reg_ptr_gates, ptr[param1 + offsetof(gru_t, gates)]);
  mov(reg_ptr_ht_1, ptr[param1 + offsetof(gru_t, ht_1)]);
  mov(reg_ptr_ht, ptr[param1 + offsetof(gru_t, ht)]);
  ymm_t ymm_one = ymm_t(0);

  if (id_ == 2) {
    reg64_t reg_ptr_tmp = r11;
    mov(reg_ptr_tmp, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(ymm_one, ptr[reg_ptr_tmp + OFFSET_EXP_ONE]);
  }
  int offset = 0;
  int d = num_ * sizeof(float);
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
    ymm_t ymm_u = ymm_t(1);
    ymm_t ymm_r = ymm_t(2);
    ymm_t ymm_s = ymm_t(3);
    ymm_t ymm_ht_1 = ymm_t(4);
    // W: {W_update, W_reset; W_state}
    if (id_ == 0 || id_ == 2) {
      vmovups(ymm_u, ptr[reg_ptr_gates + offset]);
      vmovups(ymm_s, ptr[reg_ptr_gates + offset + 2 * d]);
    }
    if (id_ == 1) {
      vmovups(ymm_r, ptr[reg_ptr_gates + offset + d]);
    }
    if (id_ == 1 || id_ == 2) {
      vmovups(ymm_ht_1, ptr[reg_ptr_ht_1 + offset]);
    }

    if (id_ == 0) {
      // ht = act_gate(u) * act_cand(s)
      act<ymm_t>(ymm_u, ymm_u, act_gate_);
      act<ymm_t>(ymm_s, ymm_s, act_cand_);
      vmulps(ymm_s, ymm_s, ymm_u);
      vmovups(ptr[reg_ptr_ht + offset], ymm_s);
    } else if (id_ == 1) {
      // ht = act_gate(r) * ht_1
      act<ymm_t>(ymm_r, ymm_r, act_gate_);
      vmulps(ymm_r, ymm_r, ymm_ht_1);
      vmovups(ptr[reg_ptr_ht + offset], ymm_r);
    } else if (id_ == 2) {
      // ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
      ymm_t ymm_one_inner = ymm_t(ymm_one.getIdx());
      act<ymm_t>(ymm_u, ymm_u, act_gate_);
      act<ymm_t>(ymm_s, ymm_s, act_cand_);
      vmulps(ymm_s, ymm_s, ymm_u);
      vsubps(ymm_u, ymm_one_inner, ymm_u);
      vmulps(ymm_u, ymm_ht_1, ymm_u);
      vaddps(ymm_u, ymm_s, ymm_u);
      vmovups(ptr[reg_ptr_ht + offset], ymm_u);
    }
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
  }
326 327 328

  ret();
}
329 330 331 332 333
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle