dist_context.py 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
17
import paddle.fluid
18
from paddle.fluid import framework
19
from paddle.fluid.framework import get_flags, set_flags
20
from paddle.fluid import core
21
from paddle.distributed.passes import PassContext
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


45 46 47 48
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


49 50 51 52 53 54
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

55 56 57 58
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
                 dist_main_progs=None,
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
                 dist_startup_progs=None,
                 serial_loss=None,
                 serial_optimizer=None,
                 strategy=None):
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
        self._original_serial_loss = serial_loss
        self._original_serial_optimizer = serial_optimizer
        if self._original_serial_main_program is None:
            self._original_serial_main_program = paddle.fluid.default_main_program(
            )
        if self._original_serial_startup_program is None:
            self._original_serial_startup_program = paddle.fluid.default_startup_program(
            )

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
        self._serial_loss = None
        self._serial_optimizer = None

        # Data members related to the program
82 83
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
84
        self._block_state = BlockState()
85 86

        # Data members related to the graph
87
        self._serial_graph = None
88 89
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
90 91
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
92

93
        # Data members related to the distributed programs
94
        # Distributed programs
95 96 97 98 99 100
        self._dist_main_programs = dist_main_progs
        if not self._dist_main_programs:
            self._dist_main_programs = {}
        self._dist_startup_programs = dist_startup_progs
        if not self._dist_startup_programs:
            self._dist_startup_programs = {}
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        # Distributed Strategy
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()

        # Distributed Operator Context
        self._dist_op_context = DistributedOperatorContext()

        # Other data members
        self._process_meshes = []
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False

120
    @property
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    def serial_main_program(self):
        return self._serial_main_program

    @serial_main_program.setter
    def serial_main_program(self, program):
        # if self._serial_main_program:
        #     print("WARNING: The program attached to this distributed context will be replaced by the new one.")
        self._original_serial_main_program = program
        self._serial_main_program = program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    # @serial_startup_program.setter
    # def serial_startup_program(self, serial_startup_program):
    #     self._serial_startup_program = serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    # @serial_loss.setter
    # def serial_loss(self, serial_loss):
    #     self._serial_loss = serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

    # @serial_optimizer.setter
    # def serial_optimizer(self, serial_optimizer):
    #     self._serial_optimizer = serial_optimizer

    @property
    def strategy(self):
        return self._strategy

    # @strategy.setter
    # def strategy(self, strategy):
    #     self._strategy = strategy
162 163 164 165 166

    @property
    def serial_graph(self):
        return self._serial_graph

167 168 169 170
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

171 172 173 174
    @property
    def process_meshes(self):
        return self._process_meshes

175 176 177 178
    @property
    def pass_context(self):
        return self._pass_context

179 180 181 182
    @property
    def dist_op_context(self):
        return self._dist_op_context

183 184 185 186
    @property
    def block_state(self):
        return self._block_state

187 188 189 190 191 192 193 194
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

195
    @property
196
    def has_annotation(self):
197 198 199
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    def initialize(self):
        if not self._is_initialized:
            self._serial_main_program = self._original_serial_main_program.clone(
            )
            self._serial_startup_program = self._original_serial_startup_program.clone(
            )
            self._serial_main_program = self._original_serial_main_program
            self._serial_startup_program = self._original_serial_startup_program
            self._serial_loss = self._original_serial_loss
            self._serial_optimizer = self._original_serial_optimizer
            self._init_dist_attr_for_program()
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            set_flags({"FLAGS_convert_all_blocks": True})
            self._serial_graph = framework.IrGraph(
                core.Graph(self._serial_main_program.desc))
            self._init_dist_attr_for_graph()
            self._is_initialized = True

    # def reset(self,
    #           skip_dist_tensors=None,
    #           skip_dist_ops=None,
    #           skip_tensor_dist_attr_fields=None,
    #           skip_op_dist_attr_fields=None):
    #     self._serial_main_program = self._original_serial_main_program.clone()
    #     self._serial_startup_program = self._original_serial_startup_program.clone()
    #     new_tensors_ids = []
    #     for tensor_id, dist_tensor in self._dist_tensors_for_program.items():
    #         if tensor_id in self._tensors_ids:
    #             dist_tensor.dist_attr.reset(skip_tensor_dist_attr_fields)
    #         else:
    #             new_tensors_ids.append(tensor_id)
    #     for tensor_id in new_tensors_ids:
    #         self._dist_tensors_for_program.pop(tensor_id)
    #     new_ops_ids = []
    #     for op_id, dist_op in self._dist_ops_for_program.items():
    #         if op_id in self._ops_ids:
    #             dist_op.dist_attr.reset(skip_op_dist_attr_fields)
    #         else:
    #             new_ops_ids.append(op_id)
    #     for op_id in new_ops_ids:
    #         self._dist_ops_for_program.pop(op_id)

    #     self.copy_dist_attr_from_program_to_graph()

    #     self._dist_main_programs = {}
    #     self._dist_startup_programs = {}

    #     self._pass_context = PassContext()

    #     self._dist_op_context = DistributedOperatorContext()

    #     self._process_meshes = []

254 255 256 257 258 259 260 261
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
262
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
263 264 265 266
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
267
        inner_serial_op_id = inner_serial_op.desc.original_id()
268 269 270 271
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
272 273 274 275 276 277 278 279 280 281 282
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor
            else:
                return None
283 284

    def get_dist_tensor_for_graph(self, serial_tensor_node):
285
        serial_tensor_node_id = _node_id(serial_tensor_node)
286 287
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

288 289 290 291 292 293 294 295 296 297 298 299
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
300

301 302 303 304 305
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

306
    def get_dist_op_for_graph(self, serial_op_node):
307
        serial_op_node_id = _node_id(serial_op_node)
308
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
309 310 311 312 313 314 315

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
316 317 318 319 320 321 322
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
323

324 325 326 327 328 329 330
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

331 332 333 334 335
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
336
        serial_tensor_node_id = _node_id(serial_tensor_node)
337 338 339 340 341 342 343 344 345 346 347 348 349
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
350 351 352 353 354 355
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
356

357 358 359 360 361 362 363
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

364 365 366 367 368
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
369
        serial_op_node_id = _node_id(serial_op_node)
370 371 372 373 374 375
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

376 377
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
378
            serial_tensor_node_id = _node_id(serial_node)
379 380 381 382 383 384 385
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
386
            serial_op_node_id = _node_id(serial_node)
387 388 389 390 391 392
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
393

394
    def _init_dist_attr_for_program(self, no_default=False):
395
        # Copy the dist tensors and dist ops annotated by users from the default context
396 397 398 399 400 401
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
        for block in self._serial_main_program.blocks:
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)

422
    def _order_nodes_by_program_order(self):
423 424
        def _contains(nodes, target_node):
            for node in nodes:
425
                if _node_id(node) == _node_id(target_node):
426 427 428
                    return True
            return False

429 430 431 432 433 434
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
435 436
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
437
                serial_ordered_tensor_nodes.append(node)
438
            if node.is_op() and node.op() is not None:
439 440 441 442 443 444 445 446 447 448
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
449
        new_serial_ordered_nodes = []
450
        for op_node in serial_ordered_op_nodes:
451 452 453 454
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
455
                    and not _contains(new_serial_ordered_nodes, tensor_node):
456
                    tensor_nodes.append(tensor_node)
457
                    new_serial_ordered_tensor_nodes.append(tensor_node)
458
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
459 460
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
461
            new_serial_ordered_op_nodes.append(op_node)
462 463 464 465
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
466
                    and not _contains(new_serial_ordered_nodes, tensor_node):
467
                    tensor_nodes.append(tensor_node)
468 469
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
470
            new_serial_ordered_nodes.extend(tensor_nodes)
471 472 473 474 475 476
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
477
        self._serial_ordered_nodes = new_serial_ordered_nodes
478 479 480 481 482 483 484 485 486 487 488
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
489

490 491 492
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
493
        for node in self.serial_ordered_nodes:
494
            if node.is_var() and node.var() is not None:
495 496 497 498 499 500 501
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
502 503
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
504 505
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
506
                serial_tensor_node_id = _node_id(node)
507 508 509 510
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
511
            if node.is_op() and node.op() is not None:
512 513 514 515 516 517 518
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
519
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
520 521
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
522
                serial_op_node_id = _node_id(node)
523 524 525
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
526 527 528 529 530 531 532 533 534

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                serial_tensor_node_id = _node_id(node)
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                serial_op_node_id = _node_id(node)
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

567
    def copy_dist_attr_from_graph_to_program(self):
568
        assert self._is_initialized, \
569 570
            "Both program and graph must be initialized."
        updated_tensors = {}
571 572
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
573 574
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
575
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
576
                updated = updated_tensors.get(tensor_id, False)
577 578 579 580 581 582 583
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
584
                    updated_tensors[tensor_id] = True
585
            if node.is_op() and node.op() is not None:
586
                op_id = self._node_id_to_op_id[_node_id(node)]
587 588 589
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
590
        # TODO: the completion algorithm will skip orphan tensors,
591 592 593 594 595 596 597 598 599 600 601 602
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
603 604 605 606 607

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
608 609 610
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
631
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
632 633 634 635 636 637 638 639 640 641 642 643 644
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
            for arg_name in serial_op.output_arg_names:
645 646 647
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
648 649 650 651 652 653 654 655 656 657 658 659 660
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1

    def validate_dist_attr_for_program(self):
661
        if not self._is_initialized:
662 663
            assert False, \
                "Program must be initialized before validating its distributed attributes"
664
        for block in self.serial_main_program.blocks:
665 666
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
667 668 669
                assert dist_tensor is not None, \
                    "Tensor {} does not have a distributed attribute.".format(
                        dist_tensor.serial_tensor.name)
670 671 672 673 674 675
                if (dist_tensor is not None) and (
                        not dist_tensor.validate_dist_attr()):
                    assert False, "Tensor {} has a wrong distributed attributes {}.".format(
                        dist_tensor.serial_tensor.name, dist_tensor.dist_attr)
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
676 677 678
                assert dist_op is not None, \
                    "Operator {} does not have a distributed attribute.".format(
                        dist_op.serial_op.type)
679 680 681 682 683
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
                    assert False, "Operator {} has a wrong distributed attributes {}.".format(
                        dist_op.serial_op.type, dist_tensor.dist_attr)
        return True

Z
zhaoyingli 已提交
684 685 686 687 688
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
689 690 691 692 693 694
            if k in [
                "_original_serial_main_program", "_original_serial_startup_program", \
                "_serial_main_program", "_serial_startup_program", "_serial_graph", \
                "_dist_main_programs", "_dist_startup_programs", \
                "_serial_ordered_nodes", "_serial_ordered_tensor_nodes", \
                "_serial_ordered_op_nodes"]:
Z
zhaoyingli 已提交
695 696 697
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
698 699 700 701

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
702 703
        return result

704 705 706 707 708 709 710 711 712

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
713
        self._main_block = None
714
        self._dst_startup_program = None
715
        self._startup_block = None
716 717
        self._cur_src_op = None
        self._cur_dist_attr = None
718
        self.grad_op_id_to_op_id = {}
719
        self.grad_var_to_var = defaultdict(dict)
720
        self._work_block = None
721
        self.already_init_sync_vars = set()
722 723
        self.varname_mapping = None
        self.rank_id = None
724

Z
zhaoyingli 已提交
725 726 727 728 729
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
730 731 732 733
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
734 735 736 737 738
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

739 740
    @property
    def dst_main_program(self):
741 742
        return self._dst_main_program

743 744 745 746
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
747

748 749 750
    @property
    def main_block(self):
        return self._main_block
751

752 753 754
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
755

756 757 758 759
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
760

761 762 763
    @property
    def startup_block(self):
        return self._startup_block
764

765 766 767 768
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
769

770 771 772 773
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
774

775 776 777
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
778 779
        return self._cur_src_op

780
    def prepare_context(self, src_op):
781

782
        self._cur_src_op = src_op
783 784 785 786 787 788

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
789 790
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
791 792 793 794 795 796 797
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
798 799
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
800 801 802
            koutputs[output_name] = varnames

        return kinputs, koutputs
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846


class BlockState(object):
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)