control_flow.py 35.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4
from ..layer_helper import LayerHelper, unique_name
from ..framework import Program, Variable, Operator
from .. import core
from tensor import assign, fill_constant
D
dzhwinter 已提交
5 6
import contextlib

Q
QI JUN 已提交
7
__all__ = [
Y
Yu Yang 已提交
8 9 10 11 12 13
    'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'StaticRNNGuard',
    'StaticRNNMemoryLink', 'WhileGuard', 'While', 'lod_rank_table',
    'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor',
    'increment', 'array_write', 'create_array', 'less_than', 'array_read',
    'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock',
    'StaticRNN'
D
dzhwinter 已提交
14 15
]

Y
Yu Yang 已提交
16

17
def split_lod_tensor(input, mask, level=0):
18
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
19 20
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
21 22 23 24 25 26 27 28 29 30 31 32
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


33
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
34
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
35
    out = helper.create_tmp_variable(dtype=in_true.dtype)
36 37 38 39 40 41 42 43 44 45 46
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yu Yang 已提交
47 48
class BlockGuard(object):
    """
49 50 51 52
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
53 54
    """

55 56
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
57
            raise TypeError("BlockGuard takes a program")
58
        self.main_program = main_program
Y
Yu Yang 已提交
59 60

    def __enter__(self):
61
        self.main_program.create_block()
Y
Yu Yang 已提交
62 63

    def __exit__(self, exc_type, exc_val, exc_tb):
64
        self.main_program.rollback()
Y
Yu Yang 已提交
65 66 67 68 69 70
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
71 72 73 74 75 76
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
77 78
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
79
            raise TypeError("StaticRNNGuard takes a StaticRNN")
80
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
81 82 83 84 85 86 87
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
88 89
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
90 91 92 93 94 95 96
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
97 98 99 100 101 102 103 104 105 106 107 108
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
118 119 120 121 122 123
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
124 125 126 127
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

128 129
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

144 145 146 147 148 149 150
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
151 152 153 154 155 156 157 158 159
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
160 161
        self._assert_in_rnn_block_('memory')
        if init is None:
162
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
163
                raise ValueError(
164
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
165 166 167
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
168 169
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
170
                dtype=batch_ref.dtype,
171
                persistable=False)
Y
Yu Yang 已提交
172 173

            parent_block.append_op(
174 175
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
176 177 178
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
179
                    'shape': boot_var.shape,
F
fengjiayi 已提交
180
                    'dtype': boot_var.dtype,
181 182
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
183 184 185 186 187 188
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
189
                dtype=init.dtype,
Y
Yu Yang 已提交
190 191 192 193 194 195 196 197 198 199
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
200 201
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
202 203 204
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
205
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
206 207 208 209 210 211 212 213
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
214
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
215 216 217 218
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
219
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
220

Y
Yu Yang 已提交
221
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
222 223
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
224
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
238
        prog = self.helper.main_program
Y
Yu Yang 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
255 256
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
296
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
297 298 299 300 301

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
302
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
318
                'sub_block': rnn_block
Y
Yu Yang 已提交
319
            })
Y
Yu Yang 已提交
320 321


Y
Yang Yang(Tony) 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

346 347
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
348 349 350 351
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
352
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
395
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
396 397


398
def lod_rank_table(x, level=0):
399 400 401 402
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
403 404 405 406 407 408 409 410 411 412
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
413 414


415
def max_sequence_len(rank_table):
F
fengjiayi 已提交
416
    """
Y
Yu Yang 已提交
417
    This function creates an operator to calculate the length of
F
fengjiayi 已提交
418 419 420 421 422 423 424 425 426 427 428
    max seqence through input rank_table(should be a lod_rank_table)
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


429
def topk(input, k):
Y
Yu Yang 已提交
430 431 432 433 434 435 436 437 438 439 440 441
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


442
def lod_tensor_to_array(x, table):
443 444 445 446
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
447 448 449
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
450
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
451
        dtype=x.dtype)
452 453 454 455 456 457 458 459
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


460
def array_to_lod_tensor(x, table):
461 462 463 464
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
465
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
466
    tmp = helper.create_tmp_variable(dtype=x.dtype)
467 468 469 470 471 472 473 474
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


475
def increment(x, value=1.0, in_place=True):
476 477 478 479 480
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
481
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
482
    if not in_place:
F
fengjiayi 已提交
483
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
484 485
    else:
        out = x
Y
Yu Yang 已提交
486 487 488
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
489
        outputs={'Out': [out]},
490
        attrs={'step': float(value)})
Y
Yang Yu 已提交
491
    return out
Y
Yu Yang 已提交
492 493


494
def array_write(x, i, array=None):
495
    """This function performs the operation to write the data out as an
496
    LOD_TENSOR_ARRAY.
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

    Args:
        x (Variable|list): The input tensor from which the data will be read.
        i (Variable|list): The subscript index in tensor array, that points the
                           place from which data will be read.
        array (Variable|list): The data can be read into this variable if
                               this is assigned.
    Returns:
        Variable: The tensor type variable that has the data written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
513
    """
Y
Yu Yang 已提交
514 515 516 517 518
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
519
            dtype=x.dtype)
Y
Yu Yang 已提交
520 521 522 523 524 525 526 527
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


528
def create_array(dtype):
Y
Yang Yang(Tony) 已提交
529 530 531 532 533 534 535
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


536
def less_than(x, y, cond=None, **ignored):
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    """
    **Less than**

    This layer returns the truth value of :math:`x < y` elementwise.

    Args:
        x(Variable): First operand of *less_than*
        y(Variable): Second operand of *less_than*
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
        Variable: The tensor variable storing the output of *less_than*.

    Examples:
        .. code-block:: python

          less = fluid.layers.less_than(x=label, y=limit)
    """
Y
Yang Yang(Tony) 已提交
555 556 557 558 559 560 561 562 563 564 565
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


566
def array_read(array, i):
K
kavyasrinet 已提交
567
    """This function performs the operation to read the data in as an
568
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
569 570 571 572 573 574 575 576 577 578 579
    Args:
        array (Variable|list): The input tensor that will be written to an array.
        i (Variable|list): The subscript index in tensor array, that points the
                           place where data will be written to.
    Returns:
        Variable: The tensor type variable that has the data written to it.
    Examples:
        .. code-block::python
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
580
    """
Y
Yu Yang 已提交
581 582 583 584 585
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
586
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
587 588 589 590 591 592
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
593 594


595
def shrink_memory(x, i, table):
596 597 598 599
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
600
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
601
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
602
    helper.append_op(
Y
Yang Yu 已提交
603
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
604 605 606 607 608 609
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
610 611


612
def array_length(array):
K
kavyasrinet 已提交
613
    """This function performs the operation to find the length of the input
614
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
630
    """
Y
Yang Yu 已提交
631 632 633 634 635 636
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
656
    def __init__(self, inputs, name=None):
Y
Yu Yang 已提交
657 658 659 660
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
661
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
705
            attrs={'sub_block': inside_block})
Y
Yu Yang 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

746
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
747 748
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
749
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
764
                dtype=x.dtype)
Y
Yu Yang 已提交
765 766 767

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
768
                dtype=x.dtype)
Y
Yu Yang 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
810
                dtype=each_out.dtype)
Y
Yu Yang 已提交
811 812 813
            out_table.append(outside_out)

            # assign local var to outside
814
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
838
                    level=0))
Y
Yu Yang 已提交
839
        return rlist
840 841 842 843 844 845 846


class DynamicRNN(object):
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

847 848
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
        self.zero_idx = fill_constant(shape=[1], value=0, dtype='int64')
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "step_input() can only take a Variable as its input")
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
                name=unique_name('lod_rank_table'),
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
                name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64')
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
                outputs={'Out': self.cond})

        input_array = parent_block.create_var(
            name=unique_name('dynamic_rnn_input_array'),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
902
        return array_read(array=input_array, i=self.step_idx)
903 904 905 906 907 908 909 910 911 912

    @contextlib.contextmanager
    def block(self):
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
        self.step_idx = fill_constant(shape=[1], dtype='int64', value=0)
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
913
            increment(x=self.step_idx, value=1.0, in_place=True)
914 915

            for new_mem, mem_array in self.mem_link:
916 917 918
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

            less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond)
919 920 921 922 923

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
924
                    x=each_array, table=self.lod_rank_table))
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950

    def __call__(self, *args, **kwargs):
        if self.status != DynamicRNN.AFTER_RNN:
            raise ValueError(
                "Dynamic RNN outputs can only be retrieved after rnn block")
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def memory(self, init=None, shape=None, value=0.0, dtype='float32'):
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
            mem_array = parent_block.create_var(
                name=unique_name('dynamic_rnn_mem_array'),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init,
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
951
            retv = array_read(array=mem_array, i=self.step_idx)
952
            retv = shrink_memory(
953
                x=retv, i=self.step_idx, table=self.lod_rank_table)
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
                name=unique_name('mem_init'), dtype=dtype)
            arr, dtype = self.input_array[0]
            in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype)
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
                name=unique_name("_".join(
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))