common.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define the common classes to build a neural network  
16 17 18 19
from ...fluid.dygraph import BilinearTensorProduct  #DEFINE_ALIAS
from ...fluid.dygraph import Pool2D  #DEFINE_ALIAS
from ...fluid.dygraph import Embedding  #DEFINE_ALIAS
from ...fluid.dygraph import Linear  #DEFINE_ALIAS
20 21
from ...fluid.dygraph import layers
from .. import functional as F
22

23 24 25 26 27 28 29 30 31 32 33 34 35
__all__ = ['BilinearTensorProduct', 'Pool2D', 'Embedding', 'Linear', 'UpSample']


class UpSample(layers.Layer):
    """
    This op resizes a batch of images.
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
    future and only use :attr:`out_shape` instead.
    Supporting resample methods:
36 37 38 39 40 41
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

42 43 44 45 46 47 48 49 50 51 52 53
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
54 55 56 57 58
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
59 60 61 62 63 64 65 66 67 68 69 70

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    Align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.

    Example:

    .. code-block:: text

71
        For scale_factor:
72 73 74 75 76
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

77 78 79 80 81 82 83 84 85 86
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
87 88 89 90 91 92 93 94 95 96 97 98 99 100

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
101
        
102 103 104
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
105

106 107 108 109 110
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
111

112 113 114 115 116 117 118 119 120 121 122 123
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

146 147 148
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
149 150
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
151
    
152 153
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
154 155 156 157
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
158 159
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
160
    
161 162 163
    Parameters:
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
164 165 166 167
        size (list|tuple|Variable|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
168
             If a Tensor Variable, its dimensions size should be a 1.
169 170 171
        scale_factor (float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.
172
             Default: None.
173 174
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
175 176 177
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
178 179 180 181
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
182
        data_format (str, optional): Specify the data format of the input, and the data format of the output
183
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
184 185 186
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
187 188 189
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
190 191 192
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
193
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
194
    Raises:
195 196 197 198 199 200 201 202 203 204 205
        TypeError: size should be a list or tuple or Variable.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
206 207
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
208
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
209 210 211 212 213 214

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.fluid.dygraph as dg
215
            upsample_op = paddle.nn.UpSample(size=[12,12])
216 217 218 219 220 221 222 223 224 225
            input_data = np.random.rand(2,3,6,10).astype("float32")
            place = paddle.fluid.CPUPlace()
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = upsample_op(input=input)
                print(output.shape)
                # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
226 227 228 229
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
230 231 232
                 align_mode=1,
                 data_format='NCHW'):
        super(UpSample, self).__init__()
233 234 235
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
236 237 238 239 240 241 242
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format

    def forward(self, input):
        out = F.interpolate(
            input,
243 244 245
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
246 247 248 249 250
            align_corners=self.align_corners,
            align_mode=self.align_mode,
            data_format=self.data_format)

        return out