generate_phi_kernel_dialect.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import sys
17 18 19 20 21 22 23 24 25 26
import os
from get_compat_kernel_signature import get_compat_kernels_info

#TODO @DannyIsFunny: more attr types need to be supported.
attr_type_converter = {
    "i": 'SI32Attr',
    "b": 'BoolAttr',
    "l": 'SI64Attr',
    "f": 'F32Attr'
}
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

target_type_converter = {"CPU": "CPU", "GPU": "GPU"}
layout_type_converter = {
    "NCHW": "NCHW",
    "NHWC": "NHWC",
    "Undefined(AnyLayout)": "ANY"
}
precision_type_converter = {
    "uint8": "UINT8",
    "int8": "INT8",
    "int16": "INT16",
    "int32": "INT32",
    "int64": "INT64",
    "float16": "FLOAT16",
    "bfloat16": "BFLOAT16",
    "float32": "FLOAT32",
    "float64": "FLOAT64",
    "complex64": "COMPLEX64",
    "complex128": "COMPLEX128",
    "bool": "BOOL"
}

49 50 51
kernel_types_info_file = "./kernels.json"
kernel_signature_info_file = "./kernel_signature.json"

52 53 54 55 56 57

def generate_kernel_name(op_name, place_str):
    [target_, layout_, precision_] = place_str[1:-1].split(',')
    target_ = target_type_converter[target_.strip()]
    layout_ = layout_type_converter[layout_.strip()]
    precision_ = precision_type_converter[precision_.strip()]
58 59 60 61 62
    class_name_ = "{}{}".format(
        op_name.replace("_", "").title(), "".join([
            target_.strip().title(), precision_.strip(), layout_.strip().title()
            .title()
        ]))
63
    alias_ = "{}.{}".format(op_name, ".".join(
64 65
        [target_.strip(), precision_.strip(), layout_.strip()]))
    return alias_, class_name_
66 67 68


def generate_attrs_info(op_name, attrs_info):
69
    kernel_attrs_names = {}
70
    attrs_args_ = ""
71 72 73 74
    with open(kernel_signature_info_file) as f:
        kernel_attrs_names = json.load(f)
        kernel_attrs_names.update(get_compat_kernels_info())
    if len(kernel_attrs_names[op_name]["attrs"]) == len(attrs_info):
75
        for index in range(len(attrs_info)):
76
            attr_name = kernel_attrs_names[op_name]["attrs"][index]
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            attr_type = attr_type_converter[attrs_info[index]]
            attrs_args_ += '{type_}:${name_},'.format(
                type_=attr_type, name_=attr_name)
    return attrs_args_[:-1]


def generate_inputs_info(input_info):
    input_args_ = ""
    for index in range(len(input_info)):
        [target_, layout_, precision_] = input_info[index].split(',')
        # todo: check vadility
        target_ = target_type_converter[target_.strip()]
        layout_ = layout_type_converter[layout_.strip()]
        precision_ = precision_type_converter[precision_.strip()]
        input_args_ += " DenseTensor<\"{}\",\"{}\",\"{}\">:$in{},".format(
            target_.strip(), precision_.strip(), layout_.strip(), str(index))
    input_args_ = input_args_[:-1]
    return input_args_


def generate_arguments_info(op_name, input_info, attr_info):
    input_args = generate_inputs_info(input_info)
    attr_args = generate_attrs_info(op_name, attr_info)
100
    context_args = "Context:$dev_ctx"
101 102 103 104 105
    argument_list = [context_args] + input_args.split(",") + attr_args.split(
        ",")
    while ("" in argument_list):
        argument_list.remove("")
    argument_ = ",".join(argument_list)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    return (("let arguments = (ins {});".format(argument_.strip(","))))


def generate_results_info(output_info):
    output_args_ = "let results = (outs "
    for index in range(len(output_info)):
        [target_, layout_, precision_] = output_info[index].split(',')
        # todo: check vadility
        target_ = target_type_converter[target_.strip()]
        layout_ = layout_type_converter[layout_.strip()]
        precision_ = precision_type_converter[precision_.strip()]
        output_args_ += " DenseTensor<\"{}\",\"{}\",\"{}\">:$out{},".format(
            target_.strip(), precision_.strip(), layout_.strip(), str(index))
    return ("{});".format(output_args_[:-1]))


def generate_supported_kernel_list(load_dict):
    supported_kernels_list_ = []
124 125 126 127
    kernel_attrs_names = {}
    with open(kernel_signature_info_file) as f:
        kernel_attrs_names = json.load(f)
        kernel_attrs_names.update(get_compat_kernels_info())
128 129 130 131 132 133 134 135 136
    for op_name in load_dict:
        kernel_list = load_dict[op_name]
        for kernel_info in kernel_list:
            for kernel_alias_ in kernel_info:
                attributes = kernel_info[kernel_alias_]["attribute"]
                flag = True
                for attribute in attributes:
                    if attribute not in attr_type_converter:
                        flag = False
137
                if flag and op_name in kernel_attrs_names:
138 139
                    supported_kernels_list_.append(op_name)
    supported_kernels_list_ = list(set(supported_kernels_list_))
140
    return supported_kernels_list_
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164


def scan_kernel_info(load_dict):
    target_type_ = []
    layout_type_ = []
    precision_type_ = []
    for op_name in load_dict:
        kernel_list = load_dict[op_name]
        for kernel_info in kernel_list:
            for kernel_alias_ in kernel_info:
                [target_, layout_, precision_] = kernel_alias_[1:-1].split(',')
                target_type_.append(target_.strip())
                layout_type_.append(layout_.strip())
                precision_type_.append(precision_.strip())
    target_type_ = list(set(target_type_))
    layout_type_ = list(set(layout_type_))
    precision_type_ = list(set(precision_type_))
    print(target_type_)
    print(layout_type_)
    print(precision_type_)


def generate_cpu_kernel_dialect(op_name, kernel_alias_, kernel_info):

165
    alias, class_name = generate_kernel_name(op_name, kernel_alias_)
166 167 168 169 170 171
    summary = 'let summary = "{name}";'.format(name=alias)
    dialect_name = alias.split(".")
    dialect_name = dialect_name[0] + "." + dialect_name[2] + "." + dialect_name[
        3]

    header = 'def {kernel_name} : PDTCPU_Kernel<"{name}",[NoSideEffect]> {left_brace}'.format(
172
        kernel_name=class_name, name=dialect_name.lower(), left_brace="{")
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    inputs_ = kernel_info["input"]
    attributes = kernel_info["attribute"]
    arguments = generate_arguments_info(op_name, inputs_, attributes)

    outputs = kernel_info["output"]
    results = generate_results_info(outputs)

    kernel_dialect = '{header_}\n  {summary_}\n  {arguments_}\n  {results_}\n{right_brace}\n'.format(
        header_=header,
        summary_=summary,
        arguments_=arguments,
        results_=results,
        right_brace="}")
    return kernel_dialect


def generate_gpu_kernel_dialect(op_name, kernel_alias_, kernel_info):

192
    alias, class_name = generate_kernel_name(op_name, kernel_alias_)
193 194 195 196 197 198
    summary = 'let summary = "{name}";'.format(name=alias)
    dialect_name = alias.split(".")
    dialect_name = dialect_name[0] + "." + dialect_name[2] + "." + dialect_name[
        3]

    header = 'def {kernel_name} : PDTGPU_Kernel<"{name}",[NoSideEffect]> {left_brace}'.format(
199
        kernel_name=class_name, name=dialect_name.lower(), left_brace="{")
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    inputs_ = kernel_info["input"]
    attributes = kernel_info["attribute"]
    arguments = generate_arguments_info(op_name, inputs_, attributes)

    outputs = kernel_info["output"]
    results = generate_results_info(outputs)

    kernel_dialect = '{header_}\n  {summary_}\n  {arguments_}\n  {results_}\n{right_brace}\n'.format(
        header_=header,
        summary_=summary,
        arguments_=arguments,
        results_=results,
        right_brace="}")
    return kernel_dialect


def generate_dialect_head():
    comment_ = "/*===- TableGen'source file -----------------------------------------------===*\\\n\
|*                                                                            *|\n\
|* Kernel Definitions                                                         *|\n\
|*                                                                            *|\n\
|* Automatically generated file, do not edit!                                 *|\n\
|* Generated by tools/infrt/generate_pten_kernel_dialect.py                   *|\n\
|*                                                                            *|\n\
\*===----------------------------------------------------------------------===*/\n"

    includes_ = "#ifndef PTEN_KERNELS\n\
#define PTEN_KERNELS\n\
include \"mlir/Interfaces/InferTypeOpInterface.td\"\n\
include \"mlir/Interfaces/LoopLikeInterface.td\"\n\
include \"mlir/IR/OpBase.td\"\n\
include \"paddle/infrt/dialect/phi/ir/infrt_phi_kernel.td\""

    return (comment_ + includes_)


def get_kernel_target(kernel_alias_):
    target = kernel_alias_[1:-1].split(",")
    return target[0]


241 242
def main():
    with open(kernel_types_info_file, "r") as f:
243 244 245 246 247 248
        load_dict = json.load(f)

        head = generate_dialect_head()

        cpu_registry_ = ""
        gpu_registry_ = ""
249 250 251
        supported_kernels = generate_supported_kernel_list(load_dict)
        print("Supported kernels:")
        print(supported_kernels)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        for op_name in load_dict:
            if op_name not in supported_kernels:
                continue
            kernel_list = load_dict[op_name]
            for kernel_info in kernel_list:
                for kernel_alias_ in kernel_info:
                    if get_kernel_target(kernel_alias_) == "CPU":
                        kernel_registry = generate_cpu_kernel_dialect(
                            op_name, kernel_alias_, kernel_info[kernel_alias_])
                        cpu_registry_ += kernel_registry
                    elif get_kernel_target(kernel_alias_) == "GPU":
                        kernel_registry = generate_gpu_kernel_dialect(
                            op_name, kernel_alias_, kernel_info[kernel_alias_])
                        gpu_registry_ += kernel_registry
                    else:
                        print("Unsupported backend:" + get_kernel_target(
                            kernel_alias_))
        end = "#endif  // PTEN_KERNELS"
        with open("../../paddle/infrt/dialect/phi/ir/phi_cpu_kernels.td",
                  "w") as dst:
            dst.write('{start_}\n{dialect_}\n{end_}'.format(
                start_=head, dialect_=cpu_registry_, end_=end))
        with open("../../paddle/infrt/dialect/phi/ir/phi_gpu_kernels.td",
                  "w") as dst:
            dst.write('{start_}\n{dialect_}\n{end_}'.format(
                start_=head, dialect_=gpu_registry_, end_=end))


if __name__ == '__main__':
281 282 283 284 285 286 287 288 289
    if not os.path.exists(kernel_types_info_file):
        print("Error: '{file_name}' not exist!".format(
            file_name=kernel_types_info_file))
    if not os.path.exists(kernel_signature_info_file):
        print("Error: '{file_name}' not exist!".format(
            file_name=kernel_signature_info_file))
    if os.path.exists(kernel_types_info_file) and os.path.exists(
            kernel_signature_info_file):
        main()