cl_helper.cc 2.6 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/lite/opencl/cl_helper.h"
#include <glog/logging.h>
#include <string>
#include <utility>
#include <vector>

namespace paddle {
namespace lite {

void CLHelper::AddKernel(const std::string &kernel_name,
                         const std::string &file_name,
                         const std::string &options) {
  VLOG(3) << " --- begin to add kernel ---";
  auto kernel = context_->GetKernel(kernel_name, file_name, options);
  kernels.emplace_back(std::move(kernel));
  VLOG(3) << " --- end to add kernel --- ";
}

cl::Kernel &CLHelper::KernelAt(const int index) {
  VLOG(3) << " --- kernel count: " << kernels.size() << " --- ";
  return *(kernels[index]);
}

cl::CommandQueue &CLHelper::OpenCLCommandQueue() {
  return context_->GetCommandQueue();
}

cl::Context &CLHelper::OpenCLContext() { return context_->GetContext(); }

std::vector<size_t> CLHelper::DefaultWorkSize(const CLImage &image) {
  // n c h w
  auto image_dim = image.tensor_dims();
  if (image_dim.size() == 4) {
    auto n = image_dim[0];
    auto h = image_dim[2];
    auto w = image_dim[3];
    auto image_width = image.ImageWidth();
    auto work_size_0 = image_width / w;
    auto work_size_1 = w;
    auto work_size_2 = n * h;
    return {static_cast<size_t>(work_size_0), static_cast<size_t>(work_size_1),
            static_cast<size_t>(work_size_2)};
  } else if (image_dim.size() == 2) {
    return {static_cast<size_t>(1), static_cast<size_t>(image.ImageWidth()),
            static_cast<size_t>(image.ImageHeight())};
  } else if (image_dim.size() == 1) {
    return {static_cast<size_t>(1), static_cast<size_t>(image.ImageWidth()),
            static_cast<size_t>(1)};
  } else if (image_dim.size() == 3) {
    auto c = image_dim[0];
    auto h = image_dim[1];
    auto w = image_dim[2];
    return {static_cast<size_t>((c + 3) / 4), static_cast<size_t>(w),
            static_cast<size_t>(h)};
  } else {
    LOG(FATAL) << "Not support this dimension, need to be implemented!";
    return {};
  }
}

}  // namespace lite
}  // namespace paddle