test_sparse_utils_op.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
import paddle
from paddle import _C_ops
20
from paddle.fluid import core
21 22 23 24
from paddle.fluid.framework import _test_eager_guard


class TestSparseUtils(unittest.TestCase):
25 26 27 28 29 30 31 32 33 34 35
    def test_create_sparse_coo_tensor(self):
        with _test_eager_guard():
            non_zero_indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            non_zero_elements = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
            dense_indices = paddle.to_tensor(non_zero_indices)
            dense_elements = paddle.to_tensor(
                non_zero_elements, dtype='float32')
            stop_gradient = False
            coo = core.eager.sparse_coo_tensor(dense_indices, dense_elements,
                                               dense_shape, stop_gradient)
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
            print(coo)

    def test_create_sparse_csr_tensor(self):
        with _test_eager_guard():
            non_zero_crows = [0, 2, 3, 5]
            non_zero_cols = [1, 3, 2, 0, 1]
            non_zero_elements = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
            dense_crows = paddle.to_tensor(non_zero_crows)
            dense_cols = paddle.to_tensor(non_zero_cols)
            dense_elements = paddle.to_tensor(
                non_zero_elements, dtype='float32')
            stop_gradient = False
            csr = core.eager.sparse_csr_tensor(dense_crows, dense_cols,
                                               dense_elements, dense_shape,
                                               stop_gradient)
53

54 55
            print(csr)

56 57 58 59 60 61
    def test_to_sparse_coo(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
            non_zero_indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            non_zero_elements = [1, 2, 3, 4, 5]
            dense_x = paddle.to_tensor(x)
62
            out = dense_x.to_sparse_coo(2)
63
            print(out)
64 65 66 67 68
            assert np.array_equal(out.non_zero_indices().numpy(),
                                  non_zero_indices)
            assert np.array_equal(out.non_zero_elements().numpy(),
                                  non_zero_elements)

69
            dense_tensor = out.to_dense()
70 71 72 73 74 75 76 77 78
            assert np.array_equal(dense_tensor.numpy(), x)

    def test_to_sparse_csr(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
            non_zero_crows = [0, 2, 3, 5]
            non_zero_cols = [1, 3, 2, 0, 1]
            non_zero_elements = [1, 2, 3, 4, 5]
            dense_x = paddle.to_tensor(x)
79
            out = dense_x.to_sparse_csr()
80 81 82 83 84 85
            print(out)
            assert np.array_equal(out.non_zero_crows().numpy(), non_zero_crows)
            assert np.array_equal(out.non_zero_cols().numpy(), non_zero_cols)
            assert np.array_equal(out.non_zero_elements().numpy(),
                                  non_zero_elements)

86
            dense_tensor = out.to_dense()
87
            print(dense_tensor)
88 89 90 91 92
            assert np.array_equal(dense_tensor.numpy(), x)


if __name__ == "__main__":
    unittest.main()