transpose_op_npu.cc 3.2 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <iostream>
M
Meiyim 已提交
13 14 15 16 17
#include <memory>
#include <string>

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/expand_op.h"
18
#include "paddle/fluid/operators/npu_op_runner.h"
M
Meiyim 已提交
19 20 21 22 23 24

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class TransposeNPUKernel : public framework::OpKernel<T> {
25 26 27 28 29 30 31 32 33 34 35 36 37
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* out = ctx.Output<framework::LoDTensor>("Out");
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    framework::NPUAttributeMap attr_input = {{"perm", axis}};
    out->mutable_data<T>(ctx.device_context().GetPlace());
    auto runner = NpuOpRunner("TransposeD", {*x}, {*out}, attr_input);
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
M
Meiyim 已提交
38 39 40 41 42
};

template <typename T>
class TransposeGradNPUKernel : public framework::OpKernel<T> {
 public:
43 44 45 46 47
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out_grad =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto* x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
M
Meiyim 已提交
48 49 50 51 52
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    std::vector<int> reversed_axis(axis);
    for (size_t i = 0; i < axis.size(); i++) {
      reversed_axis[axis[i]] = i;
    }
53
    x_grad->mutable_data<T>(ctx.GetPlace());
M
Meiyim 已提交
54 55
    framework::NPUAttributeMap attr_input = {{"perm", reversed_axis}};
    auto runner = NpuOpRunner("TransposeD", {*out_grad}, {*x_grad}, attr_input);
56 57 58
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
M
Meiyim 已提交
59 60 61 62
    runner.Run(stream);
  }
};

63 64
}  // namespace operators
}  // namespace paddle
M
Meiyim 已提交
65 66 67

namespace ops = paddle::operators;

68 69
REGISTER_OP_NPU_KERNEL(
    transpose2,
M
Meiyim 已提交
70
    ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, float>,
71 72
    ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext,
                            paddle::platform::float16>,
M
Meiyim 已提交
73 74
    ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, int>,
    ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, uint8_t>,
75
    ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, int8_t>);
M
Meiyim 已提交
76

77 78 79 80 81
REGISTER_OP_NPU_KERNEL(transpose2_grad, ops::TransposeGradNPUKernel<float>,
                       ops::TransposeGradNPUKernel<paddle::platform::float16>,
                       ops::TransposeGradNPUKernel<int>,
                       ops::TransposeGradNPUKernel<uint8_t>,
                       ops::TransposeGradNPUKernel<int8_t>);