analyzer_ner_tester.cc 5.7 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

T
tensor-tang 已提交
15
#include "paddle/fluid/inference/analysis/analyzer.h"
L
luotao1 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"

DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");

namespace paddle {
namespace inference {

struct DataRecord {
  std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
  std::vector<std::vector<int64_t>> rnn_word_datas, rnn_mention_datas;
  std::vector<size_t> lod;  // two inputs have the same lod info.
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= word_data_all.size()) {
      data.word_data_all.assign(word_data_all.begin() + batch_iter,
                                word_data_all.begin() + batch_end);
      data.mention_data_all.assign(mention_data_all.begin() + batch_iter,
                                   mention_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod.push_back(0);
      CHECK(!data.word_data_all.empty());
      CHECK(!data.mention_data_all.empty());
      CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
      for (size_t j = 0; j < data.word_data_all.size(); j++) {
        data.rnn_word_datas.push_back(data.word_data_all[j]);
        data.rnn_mention_datas.push_back(data.mention_data_all[j]);
        // calculate lod
        data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      // load word data
      std::vector<int64_t> word_data;
      split_to_int64(data[1], ' ', &word_data);
      // load mention data
      std::vector<int64_t> mention_data;
      split_to_int64(data[3], ' ', &mention_data);
      word_data_all.push_back(std::move(word_data));
      mention_data_all.push_back(std::move(mention_data));
    }
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_word_tensor, lod_mention_tensor;
  lod_word_tensor.name = "word";
  lod_mention_tensor.name = "mention";
  auto one_batch = data->NextBatch();
  int size = one_batch.lod[one_batch.lod.size() - 1];  // token batch size
  lod_word_tensor.shape.assign({size, 1});
  lod_word_tensor.lod.assign({one_batch.lod});
  lod_mention_tensor.shape.assign({size, 1});
  lod_mention_tensor.lod.assign({one_batch.lod});
  // assign data
  TensorAssignData<int64_t>(&lod_word_tensor, one_batch.rnn_word_datas);
  TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.rnn_mention_datas);
  // Set inputs.
  input_slots->assign({lod_word_tensor, lod_mention_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::INT64;
  }
}

// the first inference result
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
                                       48, 39, 38, 16, 25};

void TestChineseNERPrediction() {
  NativeConfig config;
  config.prog_file = FLAGS_infer_model + "/__model__";
  config.param_file = FLAGS_infer_model + "/param";
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;

  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  std::vector<PaddleTensor> input_slots;
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  // Prepare inputs.
  PrepareInputs(&input_slots, &data, FLAGS_batch_size);
  std::vector<PaddleTensor> outputs;

  Timer timer;
  timer.tic();
  for (int i = 0; i < FLAGS_repeat; i++) {
    predictor->Run(input_slots, &outputs);
  }
  LOG(INFO) << "===========profile result===========";
  LOG(INFO) << "batch_size: " << FLAGS_batch_size
            << ", repeat: " << FLAGS_repeat
            << ", latency: " << timer.toc() / FLAGS_repeat << "ms";
  LOG(INFO) << "=====================================";

  PADDLE_ENFORCE(outputs.size(), 1UL);
  auto &out = outputs[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  PADDLE_ENFORCE_GT(size, 0);
  int64_t *result = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < std::min(11UL, size); i++) {
    PADDLE_ENFORCE(result[i], chinese_ner_result_data[i]);
  }
}

// Directly infer with the original model.
TEST(Analyzer, Chinese_ner) { TestChineseNERPrediction(); }

}  // namespace inference
}  // namespace paddle